Back to Search
Start Over
Freeze-thaw aging increases the toxicity of microplastics to earthworms and enriches pollutant-degrading microbial genera.
- Source :
-
Journal of hazardous materials [J Hazard Mater] 2024 Nov 05; Vol. 479, pp. 135651. Date of Electronic Publication: 2024 Aug 26. - Publication Year :
- 2024
-
Abstract
- Freeze-thaw (FT) aging can change the physicochemical characteristics of microplastics (MPs). The toxic impacts of FT-aged-MPs to soil invertebrates are poorly understood. Here the toxic mechanisms of FT-aged-MPs were investigated in earthworms after 28 d exposure. Results showed that FT 50 µm PE-MPs significantly increased reactive oxygen species (ROS) by 5.78-9.04 % compared to pristine 50 µm PE-MPs (41.80-45.05 ng/mgprot), whereas FT 500 µm PE-MPs reduced ROS by 7.52-7.87 % compared to pristine 500 µm PE-MPs (51.44-54.46 ng/mgprot). FT-PP-MPs significantly increased ROS and malondialdehyde (MDA) content in earthworms by 14.82-44.06 % and 46.75-110.21 %, respectively, compared to pristine PP-MPs (40.56-44.66 ng/mgprot, 0.41-2.53 nmol/mgprot). FT-aged PE- and PP-MPs caused more severe tissue damage to earthworms. FT-aged PE-MPs increased the alpha diversity of the gut flora of earthworms compared to pristine MPs. Earthworm guts exposed to FT-aged-MPs were enriched with differential microbial genera of contaminant degradation capacity. FT-PE-MPs affected membrane translocation by up-regulating lipids and lipid-like molecules, whereas FT-PP-MPs changed xenobiotic biodegradation and metabolism by down-regulating organoheterocyclic compounds compared to the pristine PE- and PP-MPs. This study concludes that FT-aged MPs cause greater toxicity to earthworms compared to pristine MPs.<br />Competing Interests: Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
- Subjects :
- Animals
Freezing
Biodegradation, Environmental
Soil Microbiology
Bacteria metabolism
Bacteria drug effects
Bacteria classification
Oligochaeta drug effects
Oligochaeta metabolism
Microplastics toxicity
Soil Pollutants toxicity
Soil Pollutants metabolism
Reactive Oxygen Species metabolism
Malondialdehyde metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1873-3336
- Volume :
- 479
- Database :
- MEDLINE
- Journal :
- Journal of hazardous materials
- Publication Type :
- Academic Journal
- Accession number :
- 39208630
- Full Text :
- https://doi.org/10.1016/j.jhazmat.2024.135651