Back to Search Start Over

Development and Application of Automated Sandwich ELISA for Quantitating Residual dsRNA in mRNA Vaccines.

Authors :
Holland DA
Acevedo-Skrip J
Barton J
Thompson R
Bowman A
Dewar EA
Miller DV
Zhao K
Swartz AR
Loughney JW
Source :
Vaccines [Vaccines (Basel)] 2024 Aug 08; Vol. 12 (8). Date of Electronic Publication: 2024 Aug 08.
Publication Year :
2024

Abstract

The rise of mRNA as a novel vaccination strategy presents new opportunities to confront global disease. Double-stranded RNA (dsRNA) is an impurity byproduct of the in vitro transcription reaction used to manufacture mRNA that may affect the potency and safety of the mRNA vaccine in patients. Careful quantitation of dsRNA during manufacturing is critical to ensure that residual dsRNA is minimized in purified mRNA drug substances. In this work, we describe the development and implementation of a sandwich Enzyme-Linked Immunosorbent Assay (ELISA) to quantitate nanogram quantities of residual dsRNA contaminants in mRNA process intermediates using readily available commercial reagents. This sandwich ELISA developed in this study follows a standard protocol and can be easily adapted to most research laboratory environments. Additionally, a liquid handler coupled with an automated robotics system was utilized to increase assay throughput, improve precision, and reduce the analyst time requirement. The final automated sandwich ELISA was able to measure <10 ng/mL of dsRNA with a specificity for dsRNA over 2000-fold higher than mRNA, a variability of <15%, and a throughput of 72 samples per day.

Details

Language :
English
ISSN :
2076-393X
Volume :
12
Issue :
8
Database :
MEDLINE
Journal :
Vaccines
Publication Type :
Academic Journal
Accession number :
39204025
Full Text :
https://doi.org/10.3390/vaccines12080899