Back to Search Start Over

Enhanced Efficacy of Gastric Cancer Treatment through Targeted Exosome Delivery of 17-DMAG Anticancer Agent.

Authors :
Park JH
Kim SJ
Kim OH
Kim DJ
Source :
International journal of molecular sciences [Int J Mol Sci] 2024 Aug 12; Vol. 25 (16). Date of Electronic Publication: 2024 Aug 12.
Publication Year :
2024

Abstract

In this study, we explored the potential of genetically engineered exosomes as vehicles for precise drug delivery in gastric cancer therapy. A novel antitumor strategy using biocompatible exosomes (Ex) was devised by genetically engineering adipose-derived stem cells to express an MKN45-binding peptide (DE532) on their surfaces. 17-(Dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG) was encapsulated in engineered exosomes, resulting in 17-DMAG-loaded DE532 exosomes. In both in vitro and in vivo experiments using mouse gastric cancer xenograft models, we demonstrated that 17-DMAG-loaded DE532 Ex exhibited superior targetability over DE532 Ex, 17-DMAG-loaded Ex, and Ex. Administration of the 17-DMAG-loaded DE532 Ex yielded remarkable antitumor effects, as evidenced by the smallest tumor size, lowest tumor growth rate, and lowest excised tumor weight. Further mechanistic examinations revealed that the 17-DMAG-loaded DE532 Ex induced the highest upregulation of the pro-apoptotic marker B-cell lymphoma-2-like protein 11 and the lowest downregulation of the anti-apoptotic marker B-cell lymphoma-extra large. Concurrently, the 17-DMAG-loaded DE532 Ex demonstrated the lowest suppression of antioxidant enzymes, such as superoxide dismutase 2 and catalase, within tumor tissues. These findings underscore the potential of 17-DMAG-loaded DE532 exosomes as a potent therapeutic strategy for gastric cancer, characterized by precise targetability and the potential to minimize adverse effects.

Details

Language :
English
ISSN :
1422-0067
Volume :
25
Issue :
16
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
39201449
Full Text :
https://doi.org/10.3390/ijms25168762