Back to Search Start Over

Decoding the Biomimetic Mineralization of Metal-Organic Frameworks in Water.

Authors :
Lin SW
Lam PK
Wu CT
Su KH
Sung CF
Huang SR
Chang JW
Shih O
Yeh YQ
Vo TH
Tsao HK
Hsieh HT
Jeng US
Shieh FK
Yang HC
Source :
ACS nano [ACS Nano] 2024 Sep 10; Vol. 18 (36), pp. 25170-25182. Date of Electronic Publication: 2024 Aug 27.
Publication Year :
2024

Abstract

This study unveils the "green" metal-organic framework (MOF) structuring mechanism by decoding proton transfer in water during ZIF-8 synthesis. Combining in situ small- to wide-angle X-ray scattering, multiscale simulations, and quantum calculations, we reveal that the ZIF-8 early-stage nucleation and crystallization process in aqueous solution unfolds in three distinct stages. In stage I, imidazole ligands replace water in zinc-water cages, triggering an "acidity flip" that promotes proton transfer. This leads to the assembly of structures from single zinc ions to 3D amorphous cluster nuclei. In stage II, amorphous nuclei undergo a critical transformation, evolving into crystalline nuclei and subsequently forming mesoscale-ordered structures and crystallites. The process proceeds until the amorphous precursors are completely consumed, with the transformation kinetics governed by an energy barrier that determines the rate-limiting step. In stage III, stable crystallite nanoparticles form in solution, characterized by a temperature-dependent thermal equilibrium of molecular interactions at the crystal-solution interface. Beyond these core advancements, we explore the influence of encapsulated pepsin and nonencapsulated lysozyme on ZIF-8 formation, finding that their amino acid proton transfer capacity and concentration influence the resulting biomolecule-MOF composite's shape and encapsulation efficiency. The findings contribute to understanding the molecular mechanisms behind biomimetic mineralization and have potential implications for engineering proteins within amorphous MOF nuclei as protein embryo growth sites.

Details

Language :
English
ISSN :
1936-086X
Volume :
18
Issue :
36
Database :
MEDLINE
Journal :
ACS nano
Publication Type :
Academic Journal
Accession number :
39189348
Full Text :
https://doi.org/10.1021/acsnano.4c07276