Back to Search Start Over

Yield prediction for crops by gradient-based algorithms.

Authors :
Mahesh P
Soundrapandiyan R
Source :
PloS one [PLoS One] 2024 Aug 26; Vol. 19 (8), pp. e0291928. Date of Electronic Publication: 2024 Aug 26 (Print Publication: 2024).
Publication Year :
2024

Abstract

A timely and consistent assessment of crop yield will assist the farmers in improving their income, minimizing losses, and deriving strategic plans in agricultural commodities to adopt import-export policies. Crop yield predictions are one of the various challenges faced in the agriculture sector and play a significant role in planning and decision-making. Machine learning algorithms provided enough belief and proved their ability to predict crop yield. The selection of the most suitable crop is influenced by various environmental factors such as temperature, soil fertility, water availability, quality, and seasonal variations, as well as economic considerations such as stock availability, preservation capabilities, market demand, purchasing power, and crop prices. The paper outlines a framework used to evaluate the performance of various machine-learning algorithms for forecasting crop yields. The models were based on a range of prime parameters including pesticides, rainfall and average temperature. The Results of three machine learning algorithms, Categorical Boosting (CatBoost), Light Gradient-Boosting Machine (LightGBM), and eXtreme Gradient Boosting (XGBoost) are compared and found more accurate than other algorithms in predicting crop yields. The RMSE and R2 values were calculated to compare the predicted and observed rice yields, resulting in the following values: CatBoost with 800 (0.24), LightGBM with 737 (0.33), and XGBoost with 744 (0.31). Among these three machine learning algorithms, CatBoost demonstrated the highest precision in predicting yields, achieving an accuracy rate of 99.123%.<br />Competing Interests: The authors have declared that no competing interests exist.<br /> (Copyright: © 2024 Mahesh, Soundrapandiyan. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)

Details

Language :
English
ISSN :
1932-6203
Volume :
19
Issue :
8
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
39186769
Full Text :
https://doi.org/10.1371/journal.pone.0291928