Back to Search Start Over

Genome-wide identification and coexpression network analysis of heat shock protein superfamily in Apolygus lucorum.

Authors :
Li YY
Deligeer
Liu J
Shi K
Source :
Archives of insect biochemistry and physiology [Arch Insect Biochem Physiol] 2024 Aug; Vol. 116 (4), pp. e22145.
Publication Year :
2024

Abstract

Heat shock proteins (Hsp) function as crucial molecular chaperones, playing pivotal roles in insects' response to stress stimuli. Apolygus lucorum, known for its broad spectrum of host plants and significant crop damage potential, presents a compelling subject for understanding stress response mechanisms. Hsp is important for A. lucorum to tolerate temperature and insecticide stress and may be involved in the formation of resistance to the interactive effects of temperature and insecticide. Here, we employed comprehensive genomic approaches to identify Hsp superfamily members in its genome. In total, we identified 42 Hsp genes, including 3 Hsp90, 16 Hsp70, 13 Hsp60, and 10 Hsp20. Notably, we conducted motif analysis and gene structures for Hsp members, which suggested the same families are relatively conserved. Furthermore, leveraging the weighted gene coexpression network analysis, we observed diverse expression patterns of different Hsp types across various tissues, with certain Hsp70 showing tissue-specific bias. Noteworthy among the highly expressed Hsp genes was testis-specific, which may serve as a pivotal hub gene regulating the gene network. Our findings shed light on the molecular evolutionary dynamics and temperature stress response mechanisms of Hsp genes in A. lucorum, offering insights into its adaptive strategies and potential targets for pest management.<br /> (© 2024 Wiley Periodicals LLC.)

Details

Language :
English
ISSN :
1520-6327
Volume :
116
Issue :
4
Database :
MEDLINE
Journal :
Archives of insect biochemistry and physiology
Publication Type :
Academic Journal
Accession number :
39183528
Full Text :
https://doi.org/10.1002/arch.22145