Back to Search Start Over

Aging Influences Fracture Healing on the Cellular Level and Alters Systemic RANKL and OPG Concentrations in a Murine Model.

Authors :
Zhang T
Neunaber C
Ye W
Wagner A
Bülow JM
Relja B
Bundkirchen K
Source :
Advanced biology [Adv Biol (Weinh)] 2024 Nov; Vol. 8 (11), pp. e2300653. Date of Electronic Publication: 2024 Aug 20.
Publication Year :
2024

Abstract

Clinical complications frequently follow polytrauma and bleeding fractures, increasing the risk of delayed fracture healing and nonunions, especially in aged patients. Therefore, this study examines age's impact on fracture repair with and without severe bleeding in mice. Young (17-26 weeks) and aged (64-72 weeks) male C57BL/6J mice (n = 72 in total, n = 6 per group) are allocated into 3 groups: the fracture group (Fx) undergoes femur osteotomy stabilized via external fixator, the combined trauma group (THFx) additionally receives pressure-controlled trauma hemorrhage (TH) and Sham animals are implanted with catheter and fixator without blood loss or osteotomy. Femoral bones are evaluated histologically 24 h and 3 weeks post-trauma, while RANKL/OPG and β-CTx are measured systemically via ELISA after 3 weeks. Aging results in less mineralized bone and fewer osteoclasts within the fracture of aged mice in contrast to young groups after three weeks. Systemically, aged animals exhibit increased RANKL and OPG levels after fracture compared to their young counterparts. The RANKL/OPG ratio rises in aged Fx animals compared to young mice, with a similar trend in THFx groups. In conclusion, age has an effect during the later course of fracture healing on the cellular and systemic levels.<br /> (© 2024 The Author(s). Advanced Biology published by Wiley‐VCH GmbH.)

Details

Language :
English
ISSN :
2701-0198
Volume :
8
Issue :
11
Database :
MEDLINE
Journal :
Advanced biology
Publication Type :
Academic Journal
Accession number :
39164219
Full Text :
https://doi.org/10.1002/adbi.202300653