Back to Search Start Over

Multicompartment imaging of the brain using a comprehensive MR imaging protocol.

Authors :
Lo J
Du K
Lee D
Zeng C
Athertya JS
Silva ML
Flechner R
Bydder GM
Ma Y
Source :
NeuroImage [Neuroimage] 2024 Sep; Vol. 298, pp. 120800. Date of Electronic Publication: 2024 Aug 17.
Publication Year :
2024

Abstract

In this study, we describe a comprehensive 3D magnetic resonance imaging (MRI) protocol designed to assess major tissue and fluid components in the brain. The protocol comprises four different sequences: 1) magnetization transfer prepared Cones (MT-Cones) for two-pool MT modeling to quantify macromolecular content; 2) short-TR adiabatic inversion-recovery prepared Cones (STAIR-Cones) for myelin water imaging; 3) proton-density weighted Cones (PDw-Cones) for total water imaging; and 4) highly T <subscript>2</subscript> weighted Cones (T <subscript>2</subscript> w-Cones) for free water imaging. By integrating these techniques, we successfully mapped key brain components-namely macromolecules, myelin water, intra/extracellular water, and free water-in ten healthy volunteers and five patients with multiple sclerosis (MS) using a 3T clinical scanner. Brain macromolecular proton fraction (MMPF), myelin water proton fraction (MWPF), intra/extracellular water proton fraction (IEWPF), and free water proton fraction (FWPF) values were generated in white matter (WM), grey matter (GM), and MS lesions. Excellent repeatability of the protocol was demonstrated with high intra-class correlation coefficient (ICC) values. In MS patients, the MMPF and MWPF values of the lesions and normal-appearing WM (NAWM) were significantly lower than those in normal WM (NWM) in healthy volunteers. Moreover, we observed significantly higher FWPF values in MS lesions compared to those in NWM and NAWM regions. This study demonstrates the capability of our technique to volumetrically map major brain components. The technique may have particular value in providing a comprehensive assessment of neuroinflammatory and neurodegenerative diseases of the brain.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1095-9572
Volume :
298
Database :
MEDLINE
Journal :
NeuroImage
Publication Type :
Academic Journal
Accession number :
39159704
Full Text :
https://doi.org/10.1016/j.neuroimage.2024.120800