Back to Search
Start Over
Developing and validating intracity spatiotemporal air quality health index in eastern China.
- Source :
-
The Science of the total environment [Sci Total Environ] 2024 Nov 15; Vol. 951, pp. 175556. Date of Electronic Publication: 2024 Aug 15. - Publication Year :
- 2024
-
Abstract
- Background: Recently pilot published city-level air quality health index (AQHI) provides a useful tool for communicating short-term health risks of ambient air pollution, but fails to account for intracity spatial heterogeneity in exposure and associated population health impacts. This study aims to develop the intracity spatiotemporal AQHI (ST-AQHI) via refined air pollution-related health risk assessments.<br />Methods: A three-stage analysis was conducted through integrating province-wide death surveillance data and high-resolution gridded estimates of air pollution and climate factors spanning 2016-2019 in Jiangsu Province, eastern China. First, an individual-level case-crossover design was employed to quantify the short-term risk of nonaccidental mortality associated with residential exposure to individual pollutant (i.e., PM <subscript>2.5</subscript> , NO <subscript>2</subscript> , O <subscript>3</subscript> , and SO <subscript>2</subscript> ). Second, we accumulated and scaled the excess risks arising from multiple pollutants to formulate daily gridded ST-AQHI estimates at 0.1° × 0.1°, dividing exposure-related risks into low (0-3), moderate (4-6), high (7-9), and extreme high (10+) levels. Finally, the effectiveness of ST-AQHI as composite risk communication was validated through checking the dose-response associations of individual ST-AQHI exposure with deaths from nonaccidental and major cardiopulmonary causes via repeating case-crossover analyses.<br />Results: We analyzed a total of 1,905,209 nonaccidental death cases, comprising 785,567 from circulatory diseases and 247,336 from respiratory diseases. In the first-stage analysis, for each 10-μg/m <superscript>3</superscript> rise in PM <subscript>2.5</subscript> , NO <subscript>2</subscript> , O <subscript>3</subscript> , and SO <subscript>2</subscript> exposure at lag-01 day, population risk of nonaccidental death was increased by 0.8% (95% confidence interval: 0.7%, 0.9%), 1.9% (1.7%, 2.0%), 0.4% (0.3%, 0.5%), and 4.1% (3.7%, 4.5%), respectively. Spatiotemporal distribution of ST-AQHI exhibited a consistent declining trend throughout the study period (2016-2019), with annual average ST-AQHI decreasing from 5.2 ± 1.3 to 4.0 ± 1.0 and high-risk days dropping from 15.8% (58 days) to 1.6% (6 days). Exposure associated health risks showed great intracity- and between-city heterogeneities. In the validation analysis, ST-AQHI demonstrated approximately linear, threshold-free associations with multiple death events from nonaccidental and major cardiopulmonary causes, suggesting excellent performance in predicting exposure-related health risks. Specifically, each 1-unit rise in ST-AQHI was significantly associated with an excess risk of 2.0% (1.8%, 2.1%) for nonaccidental mortality, 2.3% (2.1%, 2.6%) for overall circulatory mortality, and 2.7% (2.3%, 3.1%) for overall respiratory mortality, as well as 1.7%-3.0% for major cardiopulmonary sub-causes.<br />Conclusions: ST-AQHI developed in this study performed well in predicting intracity spatiotemporal heterogeneity of death risks related to multiple air pollutants, and may hold significant practical importance in communicating air pollution-related health risks to the public at the community scales.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 951
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 39153638
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2024.175556