Back to Search
Start Over
A protet-based model that can account for energy coupling in oxidative and photosynthetic phosphorylation.
- Source :
-
Biochimica et biophysica acta. Bioenergetics [Biochim Biophys Acta Bioenerg] 2024 Nov 01; Vol. 1865 (4), pp. 149504. Date of Electronic Publication: 2024 Aug 15. - Publication Year :
- 2024
-
Abstract
- Two-stage (e.g. light-dark) phosphorylation experiments showed that there is a stored 'high-energy' intermediate linking electron transport and phosphorylation. Large, artificial electrochemical proton gradients (protonmotive forces or pmfs) can also drive phosphorylation, a fact seen as strongly supportive of the chemiosmotic coupling hypothesis that a pmf is the 'high-energy' intermediate. However, in such experiments there is an experimental threshold (pmf >170 mV, equivalent to ΔpH ∼2.8) below which no phosphorylation is in fact observed, and 220 mV are required to recreate in vivo rates. This leads to the correct question, which is then whether those values of the pmf generated by electron transport are large enough. Even the lower ones as required for any phosphorylation (leave alone those required to explain in vivo rates) are below the threshold [1, 2], whether measured directly with microelectrodes or via the use of membrane-permeant ions and/or acids/bases (which are always transporter substrates [3], so all such measurements are in fact artefactual). The single case that seemed large enough (220 mV) is now admitted to be a diffusion potential artefact [4]. Many other observables (inadequate bulk H <superscript>+</superscript> in 'O <subscript>2</subscript> -pulse'-type experiments, alkaliphilic bacteria, dual-inhibitor titrations, uncoupler-binding proteins, etc.) are consistent with the view that values of the pmf, and especially of Δψ, are actually very low. A protet-based charge separation model [2], a protonic version analogous to how energy may be stored in devices called electrets, provides a high-energy intermediate that can explain the entire literature, including the very striking demonstration [5] that close proximity is required between electron transport and ATP synthase complexes for energy coupling between them to allow phosphorylation to occur. A chief purpose of this article is thus to summarise the extensive and self-consistent literature, much of which is of some antiquity and rarely considered by modern researchers, despite its clear message of the inadequacy of chemiosmotic coupling to explain these phenomena.<br />Competing Interests: Declaration of competing interest The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Douglas B. Kell reports financial support was provided by Novo Nordisk Foundation. Douglas B. Kell reports a relationship with Novo Nordisk Foundation that includes: funding grants. If there are other authors, they declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Author(s). Published by Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-2650
- Volume :
- 1865
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Biochimica et biophysica acta. Bioenergetics
- Publication Type :
- Academic Journal
- Accession number :
- 39153588
- Full Text :
- https://doi.org/10.1016/j.bbabio.2024.149504