Back to Search
Start Over
Discovery of Broad-Spectrum Herpes Antiviral Oxazolidinone Amide Derivatives and Their Structure-Activity Relationships.
- Source :
-
ACS medicinal chemistry letters [ACS Med Chem Lett] 2024 Jul 09; Vol. 15 (8), pp. 1232-1241. Date of Electronic Publication: 2024 Jul 09 (Print Publication: 2024). - Publication Year :
- 2024
-
Abstract
- Herpesvirus infections are ubiquitous, with over 95% of the adult population infected by at least one strain. While most of these infections resolve without treatment in healthy individuals, they can cause significant morbidity and mortality in immunocompromised, stem cell, or organ transplant patients. Current nucleoside standards of care provide meaningful benefit but are limited due to poor tolerability, resistance, and generally narrow spectrum of activity. Herpesviruses share a conserved DNA polymerase, the inhibition of which is validated as an effective strategy to disrupt viral replication. By utilizing a non-nucleoside inhibitor of the viral DNA polymerase, we sought to develop agents covering multiple herpesviruses (e.g., CMV, VZV, HSV1/2, EBV, and HHV6). Herein is described the invention of an oxazolidinone class of broad-spectrum non-nucleoside herpes antiviral inhibitors. A lead compound ( 42 ) with potent biochemical and broad-spectrum cellular activity was found to be efficacious in murine models against both HSV-1 and CMV infection.<br />Competing Interests: The authors declare no competing financial interest.<br /> (© 2024 American Chemical Society.)
Details
- Language :
- English
- ISSN :
- 1948-5875
- Volume :
- 15
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- ACS medicinal chemistry letters
- Publication Type :
- Academic Journal
- Accession number :
- 39140041
- Full Text :
- https://doi.org/10.1021/acsmedchemlett.4c00117