Back to Search Start Over

Evaluation and optimization of six adsorbents for removal of tetracycline from swine wastewater: Experiments and response surface analysis.

Authors :
Zhao H
Li J
Li S
Jiang Y
Du L
Source :
Journal of environmental management [J Environ Manage] 2024 Sep; Vol. 368, pp. 122170. Date of Electronic Publication: 2024 Aug 12.
Publication Year :
2024

Abstract

The removal of tetracycline antibiotics using adsorbents is becoming an environmentally friendly and cost-effective method. This study systematically analyzed the stability, structure, morphology, and chemical properties of various adsorbents. Batch adsorption experiments (pH, time, temperature, tetracycline concentration, and adsorbent dosage) were conducted to compare the adsorption capacity of the six adsorbents (biochar, activated carbon, montmorillonite, zeolite, chitosan, and polymerized aluminum chloride) for tetracycline removal. The results indicated that montmorillonite had the highest adsorption efficiency, followed by biochar, with chitosan showing the lowest efficiency. At an adsorbent dose of 25 g/L and an initial tetracycline concentration of 120 mg/L, the removal rates of tetracycline by montmorillonite, biochar, and chitosan were 97.6%, 69.3%, and 12.2%, respectively. Furthermore, the removal rate of tetracycline by biochar, following the response surface methodology optimal mode, increased by 5.5%. The Elovich model was better suited to explain the adsorption process of tetracycline compared to the conventional pseudo-first kinetic model and second-order kinetic model. The isothermal adsorption model suggested that both chemisorption and physisorption occurred in all removal processes, in which chemisorption dominated. Tetracycline was efficiently adsorbed through the combined effects of pore filling, electrostatic attraction, π-π interactions, and complexation reactions of surface functional groups. Additionally, montmorillonite demonstrated superior performance as an adsorbent for tetracycline removal from swine wastewater compared to the other adsorbents studied.<br />Competing Interests: Declaration of competing interest To the best of our knowledge, the named authors have no conflict of interest, financial or otherwise.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1095-8630
Volume :
368
Database :
MEDLINE
Journal :
Journal of environmental management
Publication Type :
Academic Journal
Accession number :
39137639
Full Text :
https://doi.org/10.1016/j.jenvman.2024.122170