Back to Search Start Over

A High-Entropy Oxyhydroxide with a Graded Metal Network Structure for Efficient and Robust Alkaline Overall Water Splitting.

Authors :
Zhang CX
Yin D
Zhang YX
Sun YX
Zhao XJ
Liao WG
Ho JC
Source :
Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Adv Sci (Weinh)] 2024 Aug 13, pp. e2406008. Date of Electronic Publication: 2024 Aug 13.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

Designing high-entropy oxyhydroxides (HEOs) electrocatalysts with controlled nanostructures is vital for efficient and stable water-splitting electrocatalysts. Herein, a novel HEOs material (FeCoNiWCuOOH@Cu) containing five non-noble metal elements derived by electrodeposition on a 3D double-continuous porous Cu support is created. This support, prepared via the liquid metal dealloying method, offers a high specific surface area and rapid mass/charge transfer channels. The resulting high-entropy FeCoNiWCuOOH nanosheets provide a dense distribution of active sites. The heterostructure between Cu skeletons and FeCoNiWCuOOH nanosheets enhances mass transfer, electronic structure coupling, and overall structural stability, leading to excellent activities in the oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and water splitting reaction. At 10 mA cm <superscript>-2</superscript> , the overpotentials for OER, HER, and water splitting in 1.0 m KOH solution are 200, 18, and 1.40 V, respectively, outperforming most current electrocatalysts. The catalytic performance remains stable even after operating at 300 mA cm <superscript>-2</superscript> for 100, 100, and over 1000 h, correspondingly. This material has potential applications in integrated hydrogen energy systems. More importantly, density functional theory (DFT) calculations demonstrate the synergy of the five elements in enhancing water-splitting activity. This work offers valuable insights for designing industrial water electrolysis systems.<br /> (© 2024 The Author(s). Advanced Science published by Wiley‐VCH GmbH.)

Details

Language :
English
ISSN :
2198-3844
Database :
MEDLINE
Journal :
Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Publication Type :
Academic Journal
Accession number :
39136135
Full Text :
https://doi.org/10.1002/advs.202406008