Back to Search Start Over

iRhom2 deficiency reduces sepsis-induced mortality associated with the attenuation of lung macrophages in mice.

Authors :
Kim J
Kim JH
Kim Y
Lee J
Lee HJ
Koh SJ
Im JP
Kim JS
Source :
Histochemistry and cell biology [Histochem Cell Biol] 2024 Nov; Vol. 162 (5), pp. 415-428. Date of Electronic Publication: 2024 Aug 12.
Publication Year :
2024

Abstract

Sepsis has a high mortality rate and leads to multi-organ failure, including lung injury. Inactive rhomboid protease family protein (iRhom2) has been identified as accountable for the release of TNF-α, a crucial mediator in the development of sepsis. This study aimed to evaluate the role of iRhom2 in sepsis and sepsis-induced acute lung injury (ALI). TNF-α and IL-6 secretion in vitro by peritoneal macrophages from wild-type (WT) and iRhom2 knoukout (KO) mice was assessed by enzyme-linked immunosorbent assay. Cecal ligation and puncture (CLP)-induced murine sepsis model was used for in vivo experiments. To evaluate the role of iRhom2 deficiency on survival during sepsis, both WT and iRhom2 KO mice were monitored for 8 consecutive days following the CLP. For histologic and biochemical examination, the mice were killed 18 h after CLP. iRhom2 deficiency improved the survival of mice after CLP. iRhom2 deficiency decreased CD68+ macrophage infiltration in lung tissues. Multiplex immunohistochemistry revealed that the proportion of Ki-67+ CD68+ macrophages was significantly lower in iRhom2 KO mice than that in WT mice after CLP. Moreover, CLP-induced release of TNF-α and IL-6 in the serum were significantly inhibited by iRhom2 deficiency. iRhom2 deficiency reduced NF-kB p65 and IκBα phosphorylation after CLP. iRhom2 deficiency reduces sepsis-related mortality associated with attenuated macrophage infiltration and proliferation in early lung injury. iRhom2 may play a pivotal role in the pathogenesis of sepsis and early stage of sepsis-induced ALI. Thus, iRhom2 may be a potential therapeutic target for the management of sepsis and sepsis-induced ALI.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
1432-119X
Volume :
162
Issue :
5
Database :
MEDLINE
Journal :
Histochemistry and cell biology
Publication Type :
Academic Journal
Accession number :
39134731
Full Text :
https://doi.org/10.1007/s00418-024-02318-5