Back to Search
Start Over
Multi-omics analyses reveal aberrant differentiation trajectory with WNT1 loss-of-function in type XV osteogenesis imperfecta.
- Source :
-
Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research [J Bone Miner Res] 2024 Sep 02; Vol. 39 (9), pp. 1253-1267. - Publication Year :
- 2024
-
Abstract
- Osteogenesis imperfecta (OI) is a group of severe genetic bone disorders characterized by congenital low bone mass, deformity, and frequent fractures. Type XV OI is a moderate to severe form of skeletal dysplasia caused by WNT1 variants. In this cohort study from southern China, we summarized the clinical phenotypes of patients with WNT1 variants and found that the proportion of type XV patients was around 10.3% (25 out of 243) with a diverse spectrum of phenotypes. Functional assays indicated that variants of WNT1 significantly impaired its secretion and effective activity, leading to moderate to severe clinical manifestations, porous bone structure, and enhanced osteoclastic activities. Analysis of proteomic data from human skeleton indicated that the expression of SOST (sclerostin) was dramatically reduced in type XV patients compared to patients with COL1A1 quantitative variants. Single-cell transcriptome data generated from human tibia samples of patients diagnosed with type XV OI and leg-length discrepancy, respectively, revealed aberrant differentiation trajectories of skeletal progenitors and impaired maturation of osteocytes with loss of WNT1, resulting in excessive CXCL12+ progenitors, fewer mature osteocytes, and the existence of abnormal cell populations with adipogenic characteristics. The integration of multi-omics data from human skeleton delineates how WNT1 regulates the differentiation and maturation of skeletal progenitors, which will provide a new direction for the treatment strategy of type XV OI and relative low bone mass diseases such as early onset osteoporosis.<br /> (© The Author(s) 2024. Published by Oxford University Press on behalf of the American Society for Bone and Mineral Research.)
- Subjects :
- Humans
Male
Female
Child
Loss of Function Mutation
Child, Preschool
Animals
Proteomics
Adolescent
Osteocytes metabolism
Osteocytes pathology
Phenotype
Mice
Multiomics
Osteogenesis Imperfecta genetics
Osteogenesis Imperfecta metabolism
Osteogenesis Imperfecta pathology
Wnt1 Protein metabolism
Wnt1 Protein genetics
Cell Differentiation
Subjects
Details
- Language :
- English
- ISSN :
- 1523-4681
- Volume :
- 39
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
- Publication Type :
- Academic Journal
- Accession number :
- 39126373
- Full Text :
- https://doi.org/10.1093/jbmr/zjae123