Back to Search
Start Over
The CAMKK/AMPK Pathway Contributes to Besnoitia besnoiti -Induced NETosis in Bovine Polymorphonuclear Neutrophils.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2024 Aug 02; Vol. 25 (15). Date of Electronic Publication: 2024 Aug 02. - Publication Year :
- 2024
-
Abstract
- Besnoitia besnoiti is an obligate intracellular apicomplexan parasite and the causal agent of bovine besnoitiosis. Bovine besnoitiosis has a considerable economic impact in Africa and Asia due to reduced milk production, abortions, and bull infertility. In Europe, bovine besnoitiosis is classified as an emerging disease. Polymorphonuclear neutrophils (PMN) are one of the most abundant leukocytes in cattle blood and amongst the first immunological responders toward invading pathogens. In the case of B. besnoiti , bovine PMN produce reactive oxygen species (ROS), release neutrophil extracellular traps (NETs), and show increased autophagic activities upon exposure to tachyzoite stages. In that context, the general processes of NETosis and autophagy were previously reported as associated with AMP-activated protein kinase (AMPK) activation. Here, we study the role of AMPK in B. besnoiti tachyzoite-induced NET formation, thereby expanding the analysis to both upstream proteins, such as the calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK), and downstream signaling and effector molecules, such as the autophagy-related proteins ULK-1 and Beclin-1. Current data revealed early AMPK activation (<30 min) in both B. besnoiti -exposed and AMPK activator (AICAR)-treated bovine PMN. This finding correlated with upstream responses on the level of CAMKK activation. Moreover, these reactions were accompanied by an augmented autophagic activity, as represented by enhanced expression of ULK-1 but not of Beclin-1. Referring to neutrophil effector functions, AICAR treatments induced both AMPK phosphorylation and NET formation, without affecting cell viability. In B. besnoiti tachyzoite-exposed PMN, AICAR treatments failed to affect oxidative responses, but led to enhanced NET formation, thereby indicating that AMPK and autophagic activation synergize with B. besnoiti -driven NETosis.
- Subjects :
- Animals
Cattle
Autophagy drug effects
Coccidiosis parasitology
Coccidiosis veterinary
Coccidiosis immunology
Cattle Diseases parasitology
Cattle Diseases metabolism
Cattle Diseases immunology
Reactive Oxygen Species metabolism
Neutrophils metabolism
Neutrophils drug effects
Neutrophils immunology
AMP-Activated Protein Kinases metabolism
Calcium-Calmodulin-Dependent Protein Kinase Kinase metabolism
Extracellular Traps metabolism
Sarcocystidae metabolism
Signal Transduction drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 25
- Issue :
- 15
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 39126009
- Full Text :
- https://doi.org/10.3390/ijms25158442