Back to Search Start Over

Evaluation of Machine Learning Classification Models for False-Positive Reduction in Prostate Cancer Detection Using MRI Data.

Authors :
Rippa M
Schulze R
Kenyon G
Himstedt M
Kwiatkowski M
Grobholz R
Wyler S
Cornelius A
Schindera S
Burn F
Source :
Diagnostics (Basel, Switzerland) [Diagnostics (Basel)] 2024 Aug 02; Vol. 14 (15). Date of Electronic Publication: 2024 Aug 02.
Publication Year :
2024

Abstract

In this work, several machine learning (ML) algorithms, both classical ML and modern deep learning, were investigated for their ability to improve the performance of a pipeline for the segmentation and classification of prostate lesions using MRI data. The algorithms were used to perform a binary classification of benign and malignant tissue visible in MRI sequences. The model choices include support vector machines (SVMs), random decision forests (RDFs), and multi-layer perceptrons (MLPs), along with radiomic features that are reduced by applying PCA or mRMR feature selection. Modern CNN-based architectures, such as ConvNeXt, ConvNet, and ResNet, were also evaluated in various setups, including transfer learning. To optimize the performance, different approaches were compared and applied to whole images, as well as gland, peripheral zone (PZ), and lesion segmentations. The contribution of this study is an investigation of several ML approaches regarding their performance in prostate cancer (PCa) diagnosis algorithms. This work delivers insights into the applicability of different approaches for this context based on an exhaustive examination. The outcome is a recommendation or preference for which machine learning model or family of models is best suited to optimize an existing pipeline when the model is applied as an upstream filter.

Details

Language :
English
ISSN :
2075-4418
Volume :
14
Issue :
15
Database :
MEDLINE
Journal :
Diagnostics (Basel, Switzerland)
Publication Type :
Academic Journal
Accession number :
39125553
Full Text :
https://doi.org/10.3390/diagnostics14151677