Back to Search Start Over

Acute and chronic effects of the antifouling booster biocide Irgarol 1051 on the water flea Moina macrocopa revealed by multi-biomarker determination.

Authors :
Kim SA
Choi T
Kim J
Park H
Rhee JS
Source :
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP [Comp Biochem Physiol C Toxicol Pharmacol] 2024 Nov; Vol. 285, pp. 109994. Date of Electronic Publication: 2024 Aug 05.
Publication Year :
2024

Abstract

Irgarol 1051 is an herbicide extensively utilized in antifouling paint due to its ability to inhibit photosynthesis. Irgarol and its photodegradation products are highly persistent in waters and sediments, although they are present in low concentrations. However, our understanding of the harmful effects of Irgarol on non-target organisms remains limited. In this study, we assessed the effects of acute (24 h) and chronic (14 days across three generations) exposure to different concentrations (including the 1/10 NOEC, NOEC, and 1/10 LC50 calculated from the 24-h acute toxicity test) of Irgarol using the water flea Moina macrocopa. Acute exposure to 1/10 LC50 significantly decreased survival, feeding rate, thoracic limb activity, heart rate, and acetylcholinesterase activity. Elevated levels of intracellular reactive oxygen species and malondialdehyde, along with a significant increase in catalase and superoxide dismutase activity, suggested the induction of oxidative stress in response to 1/10 LC50. An initial boost in glutathione level and the enzymatic activities of glutathione peroxidase and glutathione reductase, followed by a plunge, implies some compromise in the antioxidant defense system. Upon chronic exposure to the NOEC value, both generations F1 and F2 displayed a significant decrease in survival rate, body length, number of neonates per brood, and delayed sexual maturation, suggesting maternal transfer of potential damage through generations. Taken together, Irgarol induced acute toxicity through physiological and cholinergic damage, accompanied by the induction of oxidative stress, in the water flea. Even its sub-lethal concentrations can induce detrimental effects across generations when consistently exposed.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1532-0456
Volume :
285
Database :
MEDLINE
Journal :
Comparative biochemistry and physiology. Toxicology & pharmacology : CBP
Publication Type :
Academic Journal
Accession number :
39111514
Full Text :
https://doi.org/10.1016/j.cbpc.2024.109994