Back to Search Start Over

Structural Basis of Directional Switching by the Bacterial Flagellum.

Authors :
Johnson S
Deme JC
Furlong EJ
Caesar JJE
Chevance FFV
Hughes KT
Lea SM
Source :
Research square [Res Sq] 2023 Oct 23. Date of Electronic Publication: 2023 Oct 23.
Publication Year :
2023

Abstract

The bacterial flagellum is a macromolecular protein complex that harvests energy from ion-flow across the inner membrane to power bacterial swimming in viscous fluids via rotation of the flagellar filament. Bacteria such as Salmonella enterica are capable of bi-directional flagellar rotation even though ion flow is uni-directional. How uni-directional ion-movement through the inner membrane is utilized by this macromolecular machine to drive bi-directional flagellar rotation is not understood, but a chemotactic response regulator in the cytoplasm is known to reverse the direction of rotation. We here present cryo-EM structures of intact Salmonella flagellar basal bodies, including the cytoplasmic complexes required for power transmission, in conformations representing both directions of rotation. The structures reveal that the conformational changes required for switching the direction of rotation involve 180 degree rotations of both the N- and C-terminal domains of the FliG protein. Combining these models with a new, high-resolution, cryo-EM structure of the MotA <subscript>5</subscript> B <subscript>2</subscript> stator, in complex with the C-terminal domain of FliG, reveals how uni-directional ion-flow across the inner membrane is used to accomplish bi-directional rotation of the flagellum.<br />Competing Interests: Competing interests: Authors declare no competing interests.

Details

Language :
English
ISSN :
2693-5015
Database :
MEDLINE
Journal :
Research square
Publication Type :
Academic Journal
Accession number :
39108497
Full Text :
https://doi.org/10.21203/rs.3.rs-3417165/v1