Back to Search Start Over

Dynamic protein-protein interactions of KCNQ1 and KCNE1 measured by EPR line shape analysis.

Authors :
Stowe RB
Bates A
Cook LE
Dixit G
Sahu ID
Dabney-Smith C
Lorigan GA
Source :
Biochimica et biophysica acta. Biomembranes [Biochim Biophys Acta Biomembr] 2024 Oct; Vol. 1866 (7), pp. 184377. Date of Electronic Publication: 2024 Aug 03.
Publication Year :
2024

Abstract

KCNQ1, also known as Kv7.1, is a voltage gated potassium channel that associates with the KCNE protein family. Mutations in this protein has been found to cause a variety of diseases including Long QT syndrome, a type of cardiac arrhythmia where the QT interval observed on an electrocardiogram is longer than normal. This condition is often aggravated during strenuous exercise and can cause fainting spells or sudden death. KCNE1 is an ancillary protein that interacts with KCNQ1 in the membrane at varying molar ratios. This interaction allows for the flow of potassium ions to be modulated to facilitate repolarization of the heart. The interaction between these two proteins has been studied previously with cysteine crosslinking and electrophysiology. In this study, electron paramagnetic resonance (EPR) spectroscopy line shape analysis in tandem with site directed spin labeling (SDSL) was used to observe changes in side chain dynamics as KCNE1 interacts with KCNQ1. KCNE1 was labeled at different sites that were found to interact with KCNQ1 based on previous literature, along with sites outside of that range as a control. Once labeled KCNE1 was incorporated into vesicles, KCNQ1 (helices S1-S6) was titrated into the vesicles. The line shape differences observed upon addition of KCNQ1 are indicative of an interaction between the two proteins. This method provides a first look at the interactions between KCNE1 and KCNQ1 from a dynamics perspective using the full transmembrane portion of KCNQ1.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-2642
Volume :
1866
Issue :
7
Database :
MEDLINE
Journal :
Biochimica et biophysica acta. Biomembranes
Publication Type :
Academic Journal
Accession number :
39103068
Full Text :
https://doi.org/10.1016/j.bbamem.2024.184377