Back to Search Start Over

Prospects and challenges of nanopesticides in advancing pest management for sustainable agricultural and environmental service.

Authors :
Zainab R
Hasnain M
Ali F
Abideen Z
Siddiqui ZS
Jamil F
Hussain M
Park YK
Source :
Environmental research [Environ Res] 2024 Nov 15; Vol. 261, pp. 119722. Date of Electronic Publication: 2024 Aug 02.
Publication Year :
2024

Abstract

The expanding global population and the use of conventional agrochemical pesticides have led to the loss of crop yield and food shortages. Excessive pesticide used in agriculture risks life forms by contaminating soil and water resources, necessitating the use of nano agrochemicals. This article focuses on synthesis moiety and use of nanopesticides for enhanced stability, controlled release mechanisms, improved efficacy, and reduced pesticide residue levels. The current literature survey offered regulatory frameworks for commercial deployment of nanopesticides and evaluated societal and environmental impacts. Various physicochemical and biological processes, especially microorganisms and advanced oxidation techniques are important in treating pesticide residues through degradation mechanisms. Agricultural waste could be converted into nanofibers for sustainable composites production, new nanocatalysts, such as N-doped TiO <subscript>2</subscript> and bimetallic nanoparticles for advancing pesticide degradation. Microbial and enzyme methods have been listed as emerging nanobiotechnology tools in achieving a significant reduction of chlorpyrifos and dimethomorph for the management of pesticide residues in agriculture. Moreover, cutting-edge biotechnological alternatives to conventional pesticides are advocated for promoting a transition towards more sustainable pest control methodologies. Application of nanopesticides could be critical in addressing environmental concern due to its increased mobility, prolonged persistence and ecosystem toxicity. Green synthesis of nanopesticides offers solutions to environmental risks associated and using genetic engineering techniques may induce pest and disease resistance for agricultural sustainability. Production of nanopesticides from biological sources is necessary to develop and implement comprehensive strategies to uphold agricultural productivity while safeguarding environmental integrity.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1096-0953
Volume :
261
Database :
MEDLINE
Journal :
Environmental research
Publication Type :
Academic Journal
Accession number :
39098710
Full Text :
https://doi.org/10.1016/j.envres.2024.119722