Back to Search Start Over

Systematic multi-trait AAV capsid engineering for efficient gene delivery.

Authors :
Eid FE
Chen AT
Chan KY
Huang Q
Zheng Q
Tobey IG
Pacouret S
Brauer PP
Keyes C
Powell M
Johnston J
Zhao B
Lage K
Tarantal AF
Chan YA
Deverman BE
Source :
Nature communications [Nat Commun] 2024 Aug 04; Vol. 15 (1), pp. 6602. Date of Electronic Publication: 2024 Aug 04.
Publication Year :
2024

Abstract

Broadening gene therapy applications requires manufacturable vectors that efficiently transduce target cells in humans and preclinical models. Conventional selections of adeno-associated virus (AAV) capsid libraries are inefficient at searching the vast sequence space for the small fraction of vectors possessing multiple traits essential for clinical translation. Here, we present Fit4Function, a generalizable machine learning (ML) approach for systematically engineering multi-trait AAV capsids. By leveraging a capsid library that uniformly samples the manufacturable sequence space, reproducible screening data are generated to train accurate sequence-to-function models. Combining six models, we designed a multi-trait (liver-targeted, manufacturable) capsid library and validated 88% of library variants on all six predetermined criteria. Furthermore, the models, trained only on mouse in vivo and human in vitro Fit4Function data, accurately predicted AAV capsid variant biodistribution in macaque. Top candidates exhibited production yields comparable to AAV9, efficient murine liver transduction, up to 1000-fold greater human hepatocyte transduction, and increased enrichment relative to AAV9 in a screen for liver transduction in macaques. The Fit4Function strategy ultimately makes it possible to predict cross-species traits of peptide-modified AAV capsids and is a critical step toward assembling an ML atlas that predicts AAV capsid performance across dozens of traits.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
2041-1723
Volume :
15
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
39097583
Full Text :
https://doi.org/10.1038/s41467-024-50555-y