Back to Search
Start Over
On the Resolution Limit of Electrohydrodynamic Redox 3D Printing.
- Source :
-
Small (Weinheim an der Bergstrasse, Germany) [Small] 2024 Aug 02, pp. e2402067. Date of Electronic Publication: 2024 Aug 02. - Publication Year :
- 2024
- Publisher :
- Ahead of Print
-
Abstract
- Additive manufacturing (AM) will empower the next breakthroughs in nanotechnology by combining unmatched geometrical freedom with nanometric resolution. Despite recent advances, no micro-AM technique has been able to synthesize functional nanostructures with excellent metal quality and sub-100 nm resolution. Here, significant breakthroughs in electrohydrodynamic redox 3D printing (EHD-RP) are reported by directly fabricating high-purity Cu (>98 at.%) with adjustable voxel size from >6µm down to 50 nm. This unique tunability of the feature size is achieved by managing in-flight solvent evaporation of the ion-loaded droplet to either trigger or prevent the Coulomb explosion. In the first case, the landing of confined droplets on the substrate allows the fabrication of high-aspect-ratio 50 nm-wide nanopillars, while in the second, droplet disintegration leads to large-area spray deposition. It is discussed that the reported pillar width corresponds to the ultimate resolution achievable by EHD printing. The unrivaled feature size and growth rate (>100 voxel s <superscript>-1</superscript> ) enable the direct manufacturing of 30 µm-tall atom probe tomography (APT) tips that unveil the pristine microstructure and chemistry of the deposit. This method opens up prospects for the development of novel materials for 3D nano-printing.<br /> (© 2024 The Author(s). Small published by Wiley‐VCH GmbH.)
Details
- Language :
- English
- ISSN :
- 1613-6829
- Database :
- MEDLINE
- Journal :
- Small (Weinheim an der Bergstrasse, Germany)
- Publication Type :
- Academic Journal
- Accession number :
- 39092685
- Full Text :
- https://doi.org/10.1002/smll.202402067