Back to Search
Start Over
Fluorescent Polylactic acid composite incorporating lignin-based carbon quantum dots for sustainable 4D printing applications.
- Source :
-
International journal of biological macromolecules [Int J Biol Macromol] 2024 Oct; Vol. 277 (Pt 2), pp. 134207. Date of Electronic Publication: 2024 Jul 30. - Publication Year :
- 2024
-
Abstract
- Fluorescent 4D printing materials, as innovative materials that combine fluorescent characteristics with 4D printing technology, have attracted widespread interest and research. In this study, green lignin-derived carbon quantum dots (CQDs) were used as the fluorescent module, and renewable poly(propylene carbonate) polyurethane (PPCU) was used for toughening. A new low-cost fluorescent polylactic acid (PLA) composite filament for 4D printing was developed using a simple melt extrusion method. The strength of the prepared composite was maintained at 32 MPa, while the elongation at break increased 8-fold (34 % increase), demonstrating excellent shape fixed ratio (∼99 %), recovery ratio (∼92 %), and rapid shape memory recovery speed. The presence of PPCU prevented fluorescence quenching of the CQDs in the PLA matrix, allowing the composite to emit bright green fluorescence under 365 nm ultraviolet light. The composite exhibited shear thinning behavior and had an ideal melt viscosity for 3D printing. The results obtained demonstrated the versatility of these easy-to-manufacture and low-cost filaments, opening up a novel and convenient method for the preparation of strong, tough, and multifunctional PLA materials, increasing their potential application value.<br />Competing Interests: Declaration of competing interest The authors declare that they have no conflict of interest.<br /> (Copyright © 2024. Published by Elsevier B.V.)
Details
- Language :
- English
- ISSN :
- 1879-0003
- Volume :
- 277
- Issue :
- Pt 2
- Database :
- MEDLINE
- Journal :
- International journal of biological macromolecules
- Publication Type :
- Academic Journal
- Accession number :
- 39089549
- Full Text :
- https://doi.org/10.1016/j.ijbiomac.2024.134207