Back to Search Start Over

Mitochondria-Targeted Multifunctional Nanoprodrugs by Inhibiting Metabolic Reprogramming for Combating Cisplatin-Resistant Lung Cancer.

Authors :
Lu H
Tong W
Jiang M
Liu H
Meng C
Wang K
Mu X
Source :
ACS nano [ACS Nano] 2024 Aug 13; Vol. 18 (32), pp. 21156-21170. Date of Electronic Publication: 2024 Aug 01.
Publication Year :
2024

Abstract

How to address the resistance of cisplatin (CDDP) has always been a clinical challenge. The resistance mechanism of platinum-based drugs is very complex, including nuclear DNA damage repair, apoptosis escape, and tumor metabolism reprogramming. Tumor cells can switch between mitochondrial oxidative phosphorylation (OXPHOS) and glycolysis and develop resistance to chemotherapy drugs through metabolic variability. In addition, due to the lack of histone protection and a relatively weak damage repair ability, mitochondrial DNA (mtDNA) is more susceptible to damage, which in turn affects mitochondrial OXPHOS and can become a potential target for platinum-based drugs. Therefore, mitochondria, as targets of anticancer drugs, have become a hot topic in tumor resistance research. This study constructed a self-assembled nanotargeted drug delivery system LND-SS-Pt-TPP/HA-CD. β-Cyclodextrin-grafted hydronic acid (HA-CD)-encapsulated prodrug nanoparticles can target CD44 on the tumor surface and further deliver the prodrug to intracellular mitochondria through a triphenylphosphine group (TPP <superscript>+</superscript> ). Disulfide bonds can be selectively degraded by glutathione (GSH) in mitochondria, releasing lonidamine (LND) and the cisplatin prodrug (Pt(IV)). Under the action of GSH and ascorbic acid, Pt(IV) is further reduced to cisplatin (Pt(II)). Cisplatin can cause mtDNA damage, induce mitochondrial dysfunction and mitophagy, and then affect mitochondrial OXPHOS. Meanwhile, LND can reduce the hexokinase II (HK II) level, induce destruction of mitochondria, and block energy supply by glycolysis inhibition. Ultimately, this self-assembled nano targeted delivery system can synergistically kill cisplatin-resistant lung cancer cells, which supplies an overcome cisplatin resistance choice via the disrupt mitochondria therapy.

Details

Language :
English
ISSN :
1936-086X
Volume :
18
Issue :
32
Database :
MEDLINE
Journal :
ACS nano
Publication Type :
Academic Journal
Accession number :
39088743
Full Text :
https://doi.org/10.1021/acsnano.4c04024