Back to Search Start Over

Chemical approaches for the biomass valorisation: a comprehensive review of pretreatment strategies.

Authors :
Joshi M
Manjare S
Source :
Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 Aug; Vol. 31 (36), pp. 48928-48954. Date of Electronic Publication: 2024 Jul 31.
Publication Year :
2024

Abstract

The most abundant natural renewable resource in the world, lignocellulosic biomass (LCB), has the potential to be exploited as a substitute green feedstock for the synthesis of various chemicals, materials, and biofuels. The annual global production of 13 billion tonnes of LCB offers an opportunity to cater to the increasing energy and materials requirement of process industries and also restricts the discharge of greenhouse gases. Although LCB is enriched with valuable ingredients such as cellulose, lignin, and hemicellulose, its recalcitrant nature limits its efficient utilisation. These components of LCB are strongly interlinked with each other, which resists their isolation and conversion valorisation into useful products. To disrupt the complicated structure of LCB and to isolate the lignocellulosic components in pure form, pretreatment is a crucial process in the bio-refinery, ensuring the economic feasibility of downstream processes. This review provides an outline of the structure, composition, and various sources of LCB; and the necessity of the pretreatment. Moreover, this article provides an in-depth analysis of the underlying mechanisms, advantages, and limitations of various pretreatment methods, such as physical, chemical, biological, and physicochemical. Further, the impact of chemical pretreatment techniques on the physicochemical characteristics of the material that is extracted from the biomass is also covered in detail through the rigorous evaluation of performance metrics, including substrate digestibility, sugar yield, inhibitor production, and energy requirements. This review provides a balanced and comprehensive overview of the state-of-the-art pretreatment strategies and their impact on biomass valorisation that will be useful to the scientists, engineers, and policy makers interested in biomass conversion technologies.<br /> (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Details

Language :
English
ISSN :
1614-7499
Volume :
31
Issue :
36
Database :
MEDLINE
Journal :
Environmental science and pollution research international
Publication Type :
Academic Journal
Accession number :
39083176
Full Text :
https://doi.org/10.1007/s11356-024-34473-6