Back to Search
Start Over
LEAFY and WAPO1 jointly regulate spikelet number per spike and floret development in wheat.
- Source :
-
Development (Cambridge, England) [Development] 2024 Aug 01; Vol. 151 (15). Date of Electronic Publication: 2024 Jul 31. - Publication Year :
- 2024
-
Abstract
- In wheat, the transition of the inflorescence meristem to a terminal spikelet (IM→TS) determines the spikelet number per spike (SNS), an important yield component. In this study, we demonstrate that the plant-specific transcription factor LEAFY (LFY) physically and genetically interacts with WHEAT ORTHOLOG OF APO1 (WAPO1) to regulate SNS and floret development. Loss-of-function mutations in either or both genes result in significant and similar reductions in SNS, as a result of a reduction in the rate of spikelet meristem formation per day. SNS is also modulated by significant genetic interactions between LFY and the SQUAMOSA MADS-box genes VRN1 and FUL2, which promote the IM→TS transition. Single-molecule fluorescence in situ hybridization revealed a downregulation of LFY and upregulation of the SQUAMOSA MADS-box genes in the distal part of the developing spike during the IM→TS transition, supporting their opposite roles in the regulation of SNS in wheat. Concurrently, the overlap of LFY and WAPO1 transcription domains in the developing spikelets contributes to normal floret development. Understanding the genetic network regulating SNS is a necessary first step to engineer this important agronomic trait.<br />Competing Interests: Competing interests The authors declare no competing or financial interests.<br /> (© 2024. Published by The Company of Biologists Ltd.)
- Subjects :
- MADS Domain Proteins genetics
MADS Domain Proteins metabolism
Flowers genetics
Flowers growth & development
Flowers metabolism
Mutation genetics
Inflorescence genetics
Inflorescence growth & development
Inflorescence metabolism
Triticum genetics
Triticum metabolism
Triticum growth & development
Gene Expression Regulation, Plant
Plant Proteins genetics
Plant Proteins metabolism
Transcription Factors metabolism
Transcription Factors genetics
Meristem metabolism
Meristem genetics
Meristem growth & development
Subjects
Details
- Language :
- English
- ISSN :
- 1477-9129
- Volume :
- 151
- Issue :
- 15
- Database :
- MEDLINE
- Journal :
- Development (Cambridge, England)
- Publication Type :
- Academic Journal
- Accession number :
- 39082949
- Full Text :
- https://doi.org/10.1242/dev.202803