Back to Search
Start Over
High nitrite accumulation in hydrogenotrophic denitrification at low temperature: Transcriptional regulation and microbial community succession.
- Source :
-
Water research [Water Res] 2024 Oct 01; Vol. 263, pp. 122144. Date of Electronic Publication: 2024 Jul 25. - Publication Year :
- 2024
-
Abstract
- High Pressure Hydrogenotrophic Denitrification (HPHD) provided a promising alternative for efficient and clean nitrate removal. In particular, the denitrification rates at low temperature could be compensated by elevated H <subscript>2</subscript> partial pressure. However, nitrite reduction was strongly inhibited while nitrate reduction was barely affected at low temperature. In this study, the nitrate reduction gradually recovered under long-term low temperature stress, while nitrite accumulation increased from 0.1 to 41.0 mg N/L. The activities of the electron transport system (ETS), nitrate reductase (NAR), and nitrite reductase (NIR) decreased by 45.8 %, 27.3 %, and 39.3 %, respectively, as the temperature dropped from 30 °C to 15 °C. Real time quantitative PCR analysis revealed that the denitrifying gene expression rather than gene abundance regulated nitrogen biotransformation. The substantial nitrite accumulation was attributed to the significant up-regulation by 54.7 % of narG gene expression and down-regulation by 73.7 % of nirS gene expression in hydrogenotrophic denitrifiers. In addition, the nirS-gene-bearing denitrifiers were more sensitive to low temperature compared to those bearing nirK gene. The dominant populations shifted from the genera Paracoccus to Hydrogenophaga under long-term low temperature stress. Overall, this study revealed the microbial mechanism of high nitrite accumulation in hydrogenotrophic denitrification at low temperature.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-2448
- Volume :
- 263
- Database :
- MEDLINE
- Journal :
- Water research
- Publication Type :
- Academic Journal
- Accession number :
- 39079193
- Full Text :
- https://doi.org/10.1016/j.watres.2024.122144