Back to Search Start Over

Proton Hydrogel-Based Supercapacitors with Rapid Low-Temperature Self-Healing Properties.

Authors :
Zhang Q
Wang H
Chen S
Liu X
Liu J
Liu X
Source :
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2024 Aug 07; Vol. 16 (31), pp. 40980-40991. Date of Electronic Publication: 2024 Jul 29.
Publication Year :
2024

Abstract

Hydrogel-based supercapacitors are an up-and-coming candidate for safe and portable energy storage. However, it is challenging for hydrogel electrolytes to achieve high conductivity and rapid self-healing at subzero temperatures because the movements of polymer chains and the reconstruction capability of broken dynamic bonds are limited. Herein, a highly conductive proton polyacrylamide-phytic acid (PAAm-PA) hydrogel electrolyte with rapid and autonomous self-healing ability and excellent adhesion over a wide temperature range is developed. PA, as a proton donor center, endows the hydrogels with high conductivity (102.0 mS cm <superscript>-1</superscript> ) based on the Grotthuss mechanism. PA can also prevent the crystallization of water and form multiple reversible hydrogen bonds in the polymer network, which solves the dysfunction of self-healing hydrogels in a cryogenic environment. Accordingly, the hydrogel electrolytes demonstrate fast low-temperature self-healing ability with a self-healing efficiency of 79.4% within 3 h at -20 °C. In addition, the hydrogel electrolytes present outstanding adhesiveness on electrodes due to the generation of hydrogen bonds between PA and activated carbon electrodes. As a result, the integrated hydrogel-based supercapacitors with tight bonding electrode/electrolyte interface deliver a 139.5 mF cm <superscript>-2</superscript> specific capacitance at 25 °C. Moreover, the supercapacitors display superb self-healing ability, achieving 92.1% of capacitance recovery after three cutting-healing cycles at -20 °C. Furthermore, the supercapacitors demonstrate only 6.4% capacitance degradation after 5000 charging-discharging cycles at -20 °C. This work provides a roadmap for designing all-in-one flexible energy storage devices with excellent self-healing ability over a wide temperature range.

Details

Language :
English
ISSN :
1944-8252
Volume :
16
Issue :
31
Database :
MEDLINE
Journal :
ACS applied materials & interfaces
Publication Type :
Academic Journal
Accession number :
39075860
Full Text :
https://doi.org/10.1021/acsami.4c07421