Back to Search
Start Over
Lithium isotopic evidence for enhanced reverse weathering during the Early Triassic warm period.
- Source :
-
Proceedings of the National Academy of Sciences of the United States of America [Proc Natl Acad Sci U S A] 2024 Aug 06; Vol. 121 (32), pp. e2318860121. Date of Electronic Publication: 2024 Jul 29. - Publication Year :
- 2024
-
Abstract
- Elevated temperatures persisted for an anomalously protracted interval following pulsed volcanic carbon release associated with the end-Permian mass extinction, deviating from the expected timescale of climate recovery following a carbon injection event. Here, we present evidence for enhanced reverse weathering-a CO <subscript>2</subscript> source-following the end-Permian mass extinction based on the lithium isotopic composition of marine shales and cherts. We find that the average lithium isotopic composition of Lower Triassic marine shales is significantly elevated relative to that of all other previously measured Phanerozoic marine shales. Notably, the record generated here conflicts with carbonate-based interpretations of the lithium isotopic composition of Early Triassic seawater, forcing a re-evaluation of the existing framework used to interpret lithium isotopes in sedimentary archives. Using a stochastic forward lithium cycle model, we demonstrate that elevated reverse weathering is required to reproduce the lithium isotopic values and trends observed in Lower Triassic marine shales and cherts. Collectively, this work provides direct geochemical evidence for enhanced reverse weathering in the aftermath of Earth's most severe mass extinction.<br />Competing Interests: Competing interests statement:The authors declare no competing interest.
Details
- Language :
- English
- ISSN :
- 1091-6490
- Volume :
- 121
- Issue :
- 32
- Database :
- MEDLINE
- Journal :
- Proceedings of the National Academy of Sciences of the United States of America
- Publication Type :
- Academic Journal
- Accession number :
- 39074280
- Full Text :
- https://doi.org/10.1073/pnas.2318860121