Back to Search Start Over

Failure analysis in predictive maintenance: Belt drive diagnostics with expert systems and Taguchi method for unconventional vibration features.

Authors :
Shandookh AA
Farhan Ogaili AA
Al-Haddad LA
Source :
Heliyon [Heliyon] 2024 Jul 06; Vol. 10 (13), pp. e34202. Date of Electronic Publication: 2024 Jul 06 (Print Publication: 2024).
Publication Year :
2024

Abstract

Predictive maintenance to avoid fatigue and failure enhances the reliability of mechanics, herewith, this paper explores vibrational time-domain data in advancing fault diagnosis of predictive maintenance. This study leveraged a belt-drive system with the properties: operating rotational speeds of 500-2000 RPM, belt pretensions at 70 and 150 N, and three operational cases of healthy, faulty and unbalanced, which leads to 12 studied cases. In this analysis, two one-axis piezoelectric accelerometers were utilized to capture vibration signals near the driver and pulley. Five advanced statistics were calculated during signal processing, namely Variance, Mean Absolute Deviation (MAD), Zero Crossing Rate (ZCR), Autocorrelation Coefficient, and the signal's Energy. The Taguchi method was used to test the five selected features on the basis of Signal-to-Noise (S/N) ratio. For classifications, an expert system was used based on artificial intelligence where a Random Forest (RF) model was trained on untraditional parameters for optimizing the accuracy. The resulted 0.990 and 0.999, accuracy and AUC, demonstrate the RF model's high dependability. Evidently, the methodology highlights the features potential when progressed into expert systems, which advances predictive maintenance strategies for belt-drive systems.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2024 The Authors. Published by Elsevier Ltd.)

Details

Language :
English
ISSN :
2405-8440
Volume :
10
Issue :
13
Database :
MEDLINE
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
39071613
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e34202