Back to Search
Start Over
Epigenome-wide DNA Methylation Association Study of CHIP Provides Insight into Perturbed Gene Regulation.
- Source :
-
Research square [Res Sq] 2024 Jul 16. Date of Electronic Publication: 2024 Jul 16. - Publication Year :
- 2024
-
Abstract
- With age, hematopoietic stem cells can acquire somatic mutations in leukemogenic genes that confer a proliferative advantage in a phenomenon termed "clonal hematopoiesis of indeterminate potential" (CHIP). How these mutations confer a proliferative advantage and result in increased risk for numerous age-related diseases remains poorly understood. We conducted a multiracial meta-analysis of epigenome-wide association studies (EWAS) of CHIP and its subtypes in four cohorts (N=8196) to elucidate the molecular mechanisms underlying CHIP and illuminate how these changes influence cardiovascular disease risk. The EWAS findings were functionally validated using human hematopoietic stem cell (HSC) models of CHIP. A total of 9615 CpGs were associated with any CHIP, 5990 with DNMT3A CHIP, 5633 with TET2 CHIP, and 6078 with ASXL1 CHIP (P <1×10 <superscript>-7</superscript> ). CpGs associated with CHIP subtypes overlapped moderately, and the genome-wide DNA methylation directions of effect were opposite for TET2 and DNMT3A CHIP, consistent with their opposing effects on global DNA methylation. There was high directional concordance between the CpGs shared from the meta-EWAS and human edited CHIP HSCs. Expression quantitative trait methylation analysis further identified transcriptomic changes associated with CHIP-associated CpGs. Causal inference analyses revealed 261 CHIP-associated CpGs associated with cardiovascular traits and all-cause mortality (FDR adjusted p-value <0.05). Taken together, our study sheds light on the epigenetic changes impacted by CHIP and their associations with age-related disease outcomes. The novel genes and pathways linked to the epigenetic features of CHIP may serve as therapeutic targets for preventing or treating CHIP-mediated diseases.<br />Competing Interests: Competing interests F.P. is an employee of Biomodal. L.M.R serves as a consultant for the NHLBI TOPMed Administrative Coordinating Center (through Westat). P.N. reports research grants from Allelica, Amgen, Apple, Boston Scientific, Genentech / Roche, and Novartis, personal fees from Allelica, Apple, AstraZeneca, Blackstone Life Sciences, Creative Education Concepts, CRISPR Therapeutics, Eli Lilly & Co, Foresite Labs, Genentech / Roche, GV, HeartFlow, Magnet Biomedicine, Merck, and Novartis, scientific advisory board membership of Esperion Therapeutics, Preciseli, TenSixteen Bio, and Tourmaline Bio, scientific co-founder of TenSixteen Bio, equity in MyOme, Preciseli, and TenSixteen Bio, and spousal employment at Vertex Pharmaceuticals, all unrelated to the present work. Psaty serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. No other authors have competing interests. The Jimma University Internal Review Board approved the study ensuring all procedures involving human participation adhere to ethical guidelines established by both the Institution and National Research Committee before any research began.
Details
- Language :
- English
- ISSN :
- 2693-5015
- Database :
- MEDLINE
- Journal :
- Research square
- Publication Type :
- Academic Journal
- Accession number :
- 39070619
- Full Text :
- https://doi.org/10.21203/rs.3.rs-4656898/v1