Back to Search
Start Over
Co-expression analyses reveal key Cd stress response-related metabolites and transcriptional regulators in Kentucky bluegrass.
- Source :
-
Chemosphere [Chemosphere] 2024 Sep; Vol. 363, pp. 142937. Date of Electronic Publication: 2024 Jul 24. - Publication Year :
- 2024
-
Abstract
- Kentucky bluegrass (Poa pratensis) is known for its high cadmium (Cd) tolerance and accumulation, and it is therefore considered to have the potential for phytoremediation of Cd-contaminated soil. However, the mechanisms underlying the accumulation and tolerance of Cd in Kentucky bluegrass are largely unknown. In this study, we examined variances in the transcriptome and metabolome of a Cd-tolerant variety (Midnight, M) and a Cd-sensitive variety (Rugby II, R) to pinpoint crucial regulatory genes and metabolites associated with Cd response. We also validated the role of the key metabolite, l-phenylalanine, in Cd transport and alleviation of Cd stress by applying it to the Cd-tolerant variety M. Metabolites of the M and R varieties under Cd stress were subjected to co-expression analysis. The results showed that shikimate-phenylpropanoid pathway metabolites (phenolic acids, phenylpropanoids, and polyketides) were highly induced by Cd treatment and were more abundant in the Cd-tolerant variety. Gene co-expression network analysis was employed to further identify genes closely associated with key metabolites. The calcium regulatory genes, zinc finger proteins (ZAT6 and PMA), MYB transcription factors (MYB78, MYB62, and MYB33), ONAC077, receptor-like protein kinase 4, CBL-interacting protein kinase 1, and protein phosphatase 2A were highly correlated with the metabolism of phenolic acids, phenylpropanoids, and polyketides. Exogenous l-phenylalanine can significantly increase the Cd concentration in the leaves (22.27%-55.00%) and roots (7.69%-35.16%) of Kentucky bluegrass. The use of 1 mg/L of l-phenylalanine has been demonstrated to lower malondialdehyde levels and higher total phenols, flavonoids, and anthocyanins levels, while also significantly enhancing the uptake of Cd and its translocation from roots to shoots. Our results provide insights into the response mechanisms to Cd stress and offer a novel l-phenylalanine-based phytoremediation strategy for Cd-containing soil.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)
- Subjects :
- Biodegradation, Environmental
Transcription Factors metabolism
Transcription Factors genetics
Stress, Physiological
Transcriptome
Plant Proteins metabolism
Plant Proteins genetics
Metabolome
Cadmium metabolism
Poa metabolism
Poa genetics
Soil Pollutants metabolism
Gene Expression Regulation, Plant drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1879-1298
- Volume :
- 363
- Database :
- MEDLINE
- Journal :
- Chemosphere
- Publication Type :
- Academic Journal
- Accession number :
- 39059638
- Full Text :
- https://doi.org/10.1016/j.chemosphere.2024.142937