Back to Search Start Over

The 3D organ-on-a-chip model unveils a dual role of GDF-15 in vascular growth.

Authors :
Sarad K
Dulak J
Jaźwa-Kusior A
Source :
Biochemical and biophysical research communications [Biochem Biophys Res Commun] 2024 Nov 12; Vol. 733, pp. 150441. Date of Electronic Publication: 2024 Jul 23.
Publication Year :
2024

Abstract

Pathological conditions such as oxidative stress or inflammation may alter the homeostasis of adventitia triggering vascular wall remodeling and abnormal angiogenesis, what can lead to development of atherosclerosis. Growth differentiation factor-15 (GDF-15) is a stress-responsive cytokine and metabolic regulator, but its role in angiogenesis is not yet fully defined. Here we utilized an organ-on-a-chip technology to analyze endothelial sprouting in an adventitia-resembling microenvironment. We analyzed angiogenic responses to growth factor gradient across the extracellular matrix-resembling fibrin gel and in cell co-culture in response to GDF-15-treated adventitial fibroblasts. We observed that GDF-15 enhanced the pro-angiogenic effect of vascular endothelial growth factor. On the other hand, GDF-15-treated adventitial fibroblasts decreased endothelial sprouting. GDF-15 seems to indirectly affect endothelial cells and, depending on the microenvironment, its effect can be either pro- or anti-angiogenic.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1090-2104
Volume :
733
Database :
MEDLINE
Journal :
Biochemical and biophysical research communications
Publication Type :
Academic Journal
Accession number :
39059135
Full Text :
https://doi.org/10.1016/j.bbrc.2024.150441