Back to Search Start Over

Fetal hypoplastic lungs have multilineage inflammation that is reversed by amniotic fluid stem cell extracellular vesicle treatment.

Authors :
Antounians L
Figueira RL
Kukreja B
Litvack ML
Zani-Ruttenstock E
Khalaj K
Montalva L
Doktor F
Obed M
Blundell M
Wu T
Chan C
Wagner R
Lacher M
Wilson MD
Post M
Kalish BT
Zani A
Source :
Science advances [Sci Adv] 2024 Jul 26; Vol. 10 (30), pp. eadn5405. Date of Electronic Publication: 2024 Jul 26.
Publication Year :
2024

Abstract

Antenatal administration of extracellular vesicles from amniotic fluid stem cells (AFSC-EVs) reverses features of pulmonary hypoplasia in models of congenital diaphragmatic hernia (CDH). However, it remains unknown which lung cellular compartments and biological pathways are affected by AFSC-EV therapy. Herein, we conducted single-nucleus RNA sequencing (snRNA-seq) on rat fetal CDH lungs treated with vehicle or AFSC-EVs. We identified that intra-amniotically injected AFSC-EVs reach the fetal lung in rats with CDH, where they promote lung branching morphogenesis and epithelial cell differentiation. Moreover, snRNA-seq revealed that rat fetal CDH lungs have a multilineage inflammatory signature with macrophage enrichment, which is reversed by AFSC-EV treatment. Macrophage enrichment in CDH fetal rat lungs was confirmed by immunofluorescence, flow cytometry, and inhibition studies with GW2580. Moreover, we validated macrophage enrichment in human fetal CDH lung autopsy samples. Together, this study advances knowledge on the pathogenesis of pulmonary hypoplasia and further evidence on the value of an EV-based therapy for CDH fetuses.

Details

Language :
English
ISSN :
2375-2548
Volume :
10
Issue :
30
Database :
MEDLINE
Journal :
Science advances
Publication Type :
Academic Journal
Accession number :
39058789
Full Text :
https://doi.org/10.1126/sciadv.adn5405