Back to Search Start Over

Changes in microbial dynamics and fermentation characteristics of alfalfa silage: A potent approach to mitigate greenhouse gas emission through high-quality forage silage.

Authors :
Jung JS
Wong JWC
Soundharrajan I
Lee KW
Park HS
Kim D
Choi KC
Chang SW
Ravindran B
Source :
Chemosphere [Chemosphere] 2024 Aug; Vol. 362, pp. 142920. Date of Electronic Publication: 2024 Jul 24.
Publication Year :
2024

Abstract

Feeding ruminants with high-quality forage can enhance digestibility and reduce methane production. Development of high-quality silage from leguminous plants with lactic acid bacteria can improve digestibility and it mitigate the greenhouse gas emissions. In this study, we developed a high-quality alfalfa silage with improved fermentation index and microbial dynamics using Levilactobacillus brevis-KCC-44 at low or high moisture (LM/HM) conditions and preserved it for 75 or 150 days. Alfalfa fermentation with L. brevis enhances acidification and fermentation characteristics primarily due to the dominance of lactic acid bacteria (LAB) L. brevis (>95%) compared to alfalfa fermented with epiphytic LAB. The inoculant L. brevis improved the anaerobic fermentation indexes resulting in a higher level of lactic acid in both high (10.0 ± 0.12 & 8.90 ± 0.31%DM) and low moisture (0.55 ± 0.08 & 0.39 ± 0.0 %DM) in 75 and 150 days respectively, compared to control silage. In addition, the marginal amount of acetic acid (range from 0.23 ± 0.07 to 2.04 ± 0.27 %DM) and a reduced level of butyric acid (range between 0.03 ± 0.0 to 0.13 ± 02 %DM) was noted in silage treated with LAB than the control. The LAB count and abundance of Levilactobacillus were higher in alfalfa silage fermented with L. brevis. Microbial richness and diversity were reduced in alfalfa silage treated with L. brevis which prompted lactic acid production at a higher level even for a prolonged period of time. Therefore, this L.brevis is an effective inoculant for producing high-quality alfalfa silage since it improves fermentation indexes and provides reproducible ensiling properties.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1879-1298
Volume :
362
Database :
MEDLINE
Journal :
Chemosphere
Publication Type :
Academic Journal
Accession number :
39053774
Full Text :
https://doi.org/10.1016/j.chemosphere.2024.142920