Back to Search Start Over

A bulged-type enzyme-free recognition strategy designed for single nucleotide polymorphisms integrating with label-free electrochemical biosensor.

Authors :
Ye J
Liang Q
Tan Q
Chai M
Cheng W
Fan M
Zhang Y
Zhan J
Wang Y
Wen J
Zhang Y
Zhao X
Zhang D
Source :
Biosensors & bioelectronics [Biosens Bioelectron] 2024 Nov 01; Vol. 263, pp. 116601. Date of Electronic Publication: 2024 Jul 22.
Publication Year :
2024

Abstract

Compared to conventional nucleic acid detection methods, label-free single nucleotide polymorphism (SNP) detection presents challenging due to the necessity of discerning single base mismatches, especially in the field of enzyme-free detection. In this study, we introduce a novel bulged-type DNA duplex probe designed to significantly amplify single-base differences. This probe is integrated with programmable DNA-based nanostructures to develop a sensitive, label-free biosensor for nonenzymatic SNP detection. The duplex probe with one bulge could selectively identify wild-typed DNA (WT) and mutant-type DNA (MT) based on a competitive strand displacement reaction mechanism. The hyperbranched HCR (HHCR) by incorporating of hairpin DNA into the DNA tetrahedron and surface-tethering on the portable screen printing electrode (SPCE) significantly favor the formation of negatively charged DNA nanostructure. We harnessed strong repulsion of DNA nanostructure towards the electroactive [Fe(CN)₆]³⁻/⁴⁻ in combination with electrochemical technique to create a label-free biosensor. This simple, enzyme-free and label-free biosensor could detect MT with a detection limit of 56 aM, even in multiple sequence backgrounds. The study served as the proof-of-concept for the integration of enzyme-free competitive mechanism and label-free strategy, which can be extended as a powerful tool to various fields.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1873-4235
Volume :
263
Database :
MEDLINE
Journal :
Biosensors & bioelectronics
Publication Type :
Academic Journal
Accession number :
39053148
Full Text :
https://doi.org/10.1016/j.bios.2024.116601