Back to Search
Start Over
Thermo-Switchable Enzyme@Metal-Organic Framework for Selective Biocatalysis and Biosensing.
- Source :
-
ACS applied materials & interfaces [ACS Appl Mater Interfaces] 2024 Aug 07; Vol. 16 (31), pp. 40836-40847. Date of Electronic Publication: 2024 Jul 25. - Publication Year :
- 2024
-
Abstract
- The stimulus-responsive regulation of enzyme catalytic activity and selectivity provides a new opportunity to extend the functionality and efficiency of immobilized enzymes. This work aims to design and synthesize a thermo-switchable enzyme@MOF for size-selective biocatalysis and biosensing through the immobilization of Candida rugosa lipase (CRL) within ZIF-8 functionalized with thermally responsive polymer, poly( N -isopropylacrylamide) (PNIPAM) (CRL@ZIF-8-PNIPAM). Unlike free CRL, which does not demonstrate substrate selectivity, we can reversibly tune the pore size of the ZIF-8-PNIPAM nanostructures (open pores or blocked pores) through temperature stimulus and subsequently modulate the substrate selectivity of CRL@ZIF-8-PNIPAM. CRL@ZIF-8-PNIPAM had the highest hydrolytic activity for small molecules (12 mM p -nitrophenol/mg protein/min, 4-nitrophenyl butyrate ( p -NP Be)) and the lowest hydrolytic activity for large molecules (0.16 mM p-nitrophenol/mg protein/min, 4-nitrophenyl palmitate ( p -NP P)). In addition, CRL@ZIF-8-PNIPAM demonstrated thermo-switchable behavior for large molecules ( p -NP P). The p -NP P hydrolytic activity of CRL@ZIF-8-PNIPAM was significantly lower at 40 °C (blocked pores) than at 27 °C (open pores). However, the transition of blocked pores and open pores is a gradual process that resulted in a delay in the "thermo-switchable" catalytic behavior of CRL@ZIF-8-PNIPAM during thermal cycling. CRL@ZIF-8-PNIPAM was also successfully used for the fabrication of electrochemical biosensors for the selective biosensing of pesticides with different molecular sizes.
Details
- Language :
- English
- ISSN :
- 1944-8252
- Volume :
- 16
- Issue :
- 31
- Database :
- MEDLINE
- Journal :
- ACS applied materials & interfaces
- Publication Type :
- Academic Journal
- Accession number :
- 39052986
- Full Text :
- https://doi.org/10.1021/acsami.4c05208