Back to Search
Start Over
Blood culture-free ultra-rapid antimicrobial susceptibility testing.
- Source :
-
Nature [Nature] 2024 Aug; Vol. 632 (8026), pp. 893-902. Date of Electronic Publication: 2024 Jul 24. - Publication Year :
- 2024
-
Abstract
- Treatment assessment and patient outcome for sepsis depend predominantly on the timely administration of appropriate antibiotics <superscript>1-3</superscript> . However, the clinical protocols used to stratify and select patient-specific optimal therapy are extremely slow <superscript>4</superscript> . In particular, the major hurdle in performing rapid antimicrobial susceptibility testing (AST) remains in the lengthy blood culture procedure, which has long been considered unavoidable due to the limited number of pathogens present in the patient's blood. Here we describe an ultra-rapid AST method that bypasses the need for traditional blood culture, thereby demonstrating potential to reduce the turnaround time of reporting drug susceptibility profiles by more than 40-60 h compared with hospital AST workflows. Introducing a synthetic beta-2-glycoprotein I peptide, a broad range of microbial pathogens are selectively recovered from whole blood, subjected to species identification or instantly proliferated and phenotypically evaluated for various drug conditions using a low-inoculum AST chip. The platform was clinically evaluated by the enrolment of 190 hospitalized patients suspected of having infection, achieving 100% match in species identification. Among the eight positive cases, six clinical isolates were retrospectively tested for AST showing an overall categorical agreement of 94.90% with an average theoretical turnaround time of 13 ± 2.53 h starting from initial blood processing.<br /> (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
- Subjects :
- Humans
Blood Culture instrumentation
Blood Culture methods
Retrospective Studies
Time Factors
beta 2-Glycoprotein I
Anti-Bacterial Agents pharmacology
Bacteria drug effects
Bacteria isolation & purification
Microbial Sensitivity Tests instrumentation
Microbial Sensitivity Tests methods
Sepsis microbiology
Sepsis drug therapy
Sepsis blood
Sepsis diagnosis
Microchip Analytical Procedures methods
Subjects
Details
- Language :
- English
- ISSN :
- 1476-4687
- Volume :
- 632
- Issue :
- 8026
- Database :
- MEDLINE
- Journal :
- Nature
- Publication Type :
- Academic Journal
- Accession number :
- 39048820
- Full Text :
- https://doi.org/10.1038/s41586-024-07725-1