Back to Search Start Over

Asymmetric Cu-N1O3 Sites Coupling Atop-type and Bridge-type Adsorbed *C1 for Electrocatalytic CO2-to-C2 Conversion.

Authors :
Wang C
Lv Z
Liu Y
Dai L
Liu R
Sun C
Liu W
Feng X
Yang W
Wang B
Source :
Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2024 Jul 23, pp. e202411216. Date of Electronic Publication: 2024 Jul 23.
Publication Year :
2024
Publisher :
Ahead of Print

Abstract

2D functional porous frameworks offer a platform for studying the structure-activity relationships during electrocatalytic CO2 reduction reaction (CO2RR). Yet challenges still exist to breakthrough key limitations on site configuration (typical M-O4 or M-N4 units) and product selectivity (common CO2-to-CO conversion). Herein, a novel 2D metal-organic framework (MOF) with planar asymmetric N/O mixed coordinated Cu-N1O3 unit is constructed, labeled as BIT-119. When applied to CO2RR, BIT-119 could reach a CO2-to-C2 conversion with C2 partial current density ranging from 36.9 to 165.0 mA cm-2 in flow cell. Compared to the typical symmetric Cu-O4 units, asymmetric Cu-N1O3 units lead to the re-distribution of local electron structure, regulating the adsorption strength of several key adsorbates and the following catalytic selectivity. From experimental and theoretical analyses, Cu-N1O3 sites could simultaneously couple the atop-type (on Cu site) and bridge-type (on Cu-N site) adsorption of *C1 species to reach the CO2-to-C2 conversion. This work broadens the feasible C-C coupling mechanism on 2D functional porous frameworks.<br /> (© 2024 Wiley‐VCH GmbH.)

Details

Language :
English
ISSN :
1521-3773
Database :
MEDLINE
Journal :
Angewandte Chemie (International ed. in English)
Publication Type :
Academic Journal
Accession number :
39044263
Full Text :
https://doi.org/10.1002/anie.202411216