Back to Search Start Over

The anti-angiogenic and anti-vasculogenic mimicry effects of GN25 in endothelial and glioma cells.

Authors :
Wen ZH
Chang L
Yang SN
Yu CL
Tung FY
Kuo HM
Lu IC
Wu CY
Shih PC
Chen WF
Chen NF
Source :
Biochimica et biophysica acta. Molecular cell research [Biochim Biophys Acta Mol Cell Res] 2024 Oct; Vol. 1871 (7), pp. 119799. Date of Electronic Publication: 2024 Jul 21.
Publication Year :
2024

Abstract

Background and Purpose: Scientists have been exploring anti-angiogenic strategies to inhibit angiogenesis and prevent tumor growth. Vasculogenic mimicry (VM) in glioblastoma multiforme (GBM) poses a challenge, complicating anti-angiogenesis therapy. A novel drug, GN25 (3-[{1,4-dihydro-5,8-dimethoxy-1,4-dioxo-2-naphthalenyl}thio]-propanoic acid), can inhibit tumor formation. This study aims to investigate the microenvironmental effects and molecular mechanisms of GN25 in anti-angiogenesis and anti-VM.<br />Experimental Approach: MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay was used to evaluate the cell viability of different concentrations of GN25 in human umbilical vein endothelial cells (HUVEC) and Uppsala 87 malignant glioma (U87MG) cells. Functional assays were used to investigate the effects of GN25 on angiogenesis-related processes, whereas gelatin zymography, enzyme-linked immunosorbent assays, and Western blotting were utilized to assess the influence on matrix metalloproteinase (MMP)-2 and vascular endothelial growth factor (VEGF) secretion and related signaling pathways.<br />Key Results: GN25 suppressed migration, wound healing, and tube formation in HUVECs and disrupted angiogenesis in a rat aorta ring and zebrafish embryo model. GN25 dose-dependently reduced phosphatidylinositol 3-kinase/AKT and inhibited MMP-2/VEGF secretion in HUVECs. In U87MG cells, GN25 inhibited migration, wound healing, and VM, accompanied by a decrease in MMP-2 and VEGF secretion. The results indicate that GN25 effectively inhibits angiogenesis and VM formation in HUVECs and U87MG cells without affecting preexisting vascular structures.<br />Conclusion and Implications: This study elaborated GN25's potential as an anti-angiogenic agent by elucidating its inhibitory effects on classical angiogenesis. VM provides valuable insights for developing novel therapeutic strategies against tumor progression and angiogenesis-related diseases. These results indicate the potential of GN25 as a promising candidate for angiogenesis-related diseases.<br />Competing Interests: Declaration of competing interest The authors declare no conflicts of interest.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-2596
Volume :
1871
Issue :
7
Database :
MEDLINE
Journal :
Biochimica et biophysica acta. Molecular cell research
Publication Type :
Academic Journal
Accession number :
39043304
Full Text :
https://doi.org/10.1016/j.bbamcr.2024.119799