Back to Search Start Over

Zinc finger BED-type containing 3 promotes hepatic steatosis by interacting with polypyrimidine tract-binding protein 1.

Authors :
Wu Y
Yang M
Wu SB
Luo PQ
Zhang C
Ruan CS
Cui W
Zhao QR
Chen LX
Meng JJ
Song Q
Zhang WJ
Pei QQ
Li F
Zeng T
Du HX
Xu LX
Zhang W
Zhang XX
Luo XH
Source :
Diabetologia [Diabetologia] 2024 Oct; Vol. 67 (10), pp. 2346-2366. Date of Electronic Publication: 2024 Jul 22.
Publication Year :
2024

Abstract

Aims/hypothesis: The relationship between metabolic dysfunction-associated steatotic liver disease (MASLD) and type 2 diabetes mellitus, insulin resistance and the metabolic syndrome is well established. While zinc finger BED-type containing 3 (ZBED3) has been linked to type 2 diabetes mellitus and the metabolic syndrome, its role in MASLD remains unclear. In this study, we aimed to investigate the function of ZBED3 in the context of MASLD.<br />Methods: Expression levels of ZBED3 were assessed in individuals with MASLD, as well as in cellular and animal models of MASLD. In vitro and in vivo analyses were conducted using a cellular model of MASLD induced by NEFA and an animal model of MASLD induced by a high-fat diet (HFD), respectively, to investigate the role of ZBED3 in MASLD. ZBED3 expression was increased by lentiviral infection or tail-vein injection of adeno-associated virus. RNA-seq and bioinformatics analysis were employed to examine the pathways through which ZBED3 modulates lipid accumulation. Findings from these next-generation transcriptome sequencing studies indicated that ZBED3 controls SREBP1c (also known as SREBF1; a gene involved in fatty acid de novo synthesis); thus, co-immunoprecipitation and LC-MS/MS were utilised to investigate the molecular mechanisms by which ZBED3 regulates the sterol regulatory element binding protein 1c (SREBP1c).<br />Results: In this study, we found that ZBED3 was significantly upregulated in the liver of individuals with MASLD and in MASLD animal models. ZBED3 overexpression promoted NEFA-induced triglyceride accumulation in hepatocytes in vitro. Furthermore, the hepatocyte-specific overexpression of Zbed3 promoted hepatic steatosis. Conversely, the hepatocyte-specific knockout of Zbed3 resulted in resistance of HFD-induced hepatic steatosis. Mechanistically, ZBED3 interacts directly with polypyrimidine tract-binding protein 1 (PTBP1) and affects its binding to the SREBP1c mRNA precursor to regulate SREBP1c mRNA stability and alternative splicing.<br />Conclusions/interpretation: This study indicates that ZBED3 promotes hepatic steatosis and serves as a critical regulator of the progression of MASLD.<br />Data Availability: RNA-seq data have been deposited in the NCBI Gene Expression Omnibus ( www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE231875 ). MS proteomics data have been deposited to the ProteomeXchange Consortium via the iProX partner repository ( https://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD041743 ).<br /> (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)

Details

Language :
English
ISSN :
1432-0428
Volume :
67
Issue :
10
Database :
MEDLINE
Journal :
Diabetologia
Publication Type :
Academic Journal
Accession number :
39037604
Full Text :
https://doi.org/10.1007/s00125-024-06224-2