Back to Search Start Over

Tandem Mass Spectrometry Approaches for Differentiation and Quantification Pidotimod and Its Three Isomers in the Gas Phase.

Authors :
Zhang C
Liu Y
He L
Li W
Source :
Chirality [Chirality] 2024 Aug; Vol. 36 (8), pp. e23699.
Publication Year :
2024

Abstract

Pidotimod is a chiral drug that possesses two chiral centers, resulting in three isomeric impurities (analytes, A). This study employs electrospray ionization ion trap mass spectrometry (ESI-MS) through collision-induced dissociation (CID) to investigate the chiral recognition of pidotimod and its three isomers to eliminate chromatographic separation. Three approaches were explored: (1) Protonated molecules in CID exhibited discriminative potential for diastereomers, with the ability to distinguish between S,S and R,R configurations, albeit with an R <subscript>chiral</subscript> value of ~1.8. However, differentiation between R,S and S,R configurations was not achievable. (2) Alkali adductions (lithium and sodium) only discerned diastereomers. The R <subscript>chiral</subscript> values of the diastereomers obtained from alkali adduct ions were significantly lower than those obtained from protonated ions. (3) Therefore, a third approach was used to address the challenge of distinguishing between R,S and S,R configurations, including the introduction of chiral references (ref) and transition metals (M <superscript>II</superscript> ) to form metal-bound complexes [M <superscript>II</superscript> (A)(ref)-H] <superscript>+</superscript> . Additionally, we synthesized a novel ligand, 4-(N-tert-butoxycarbonyl [Boc]-L-prolinamido)phenol (denoted as ligand A), by modifying N-t-Boc-L-Pro with 2-aminophenol, which, in combination with Cu <superscript>II</superscript> and Ni <superscript>II</superscript> , enabled simultaneous differentiation of all four isomers. Cu <superscript>II</superscript> complexes exhibited significant chiral selectivity between R,S and S,R configurations. Density functional theory calculations were performed to further elucidate the stereodynamic behavior and stoichiometry of these ions in the gas phase. These calculations revealed the interaction energy and coordination sites of the precursor ions in the gas phase, correlating well with MS/MS experiment results. Additionally, the logarithm of the Cu <superscript>II</superscript> complexes' characteristic fragment ion abundance ratio demonstrated a strong linear relationship with enantiomeric excess (ee). This study presents a novel strategy for chiral drug quality control that eliminates chromatographic separation.<br /> (© 2024 Wiley Periodicals LLC.)

Details

Language :
English
ISSN :
1520-636X
Volume :
36
Issue :
8
Database :
MEDLINE
Journal :
Chirality
Publication Type :
Academic Journal
Accession number :
39034278
Full Text :
https://doi.org/10.1002/chir.23699