Back to Search Start Over

Screening and anti-angiogenesis activity of Chiloscyllium plagiosum anti-human VEGFR2 single-domain antibody.

Authors :
Guo Y
Wang R
Wang Y
Zheng F
Chen J
Lyu Z
Yuan C
Liu L
Jiang X
Source :
Clinical and experimental immunology [Clin Exp Immunol] 2024 Oct 16; Vol. 218 (2), pp. 177-187.
Publication Year :
2024

Abstract

Recently, the incidence of malignant tumors is on the rise and searching for new treatments on it has become the research priority. Blocking the vascular endothelial growth factor (VEGF) and its receptor (VEGFR) is one of the treatment strategies that used in the development of specific anti-angiogenic drugs. The deficiencies in tissue penetration and affinity maturation become the weakness of these drugs in anti-tumors applications. The single heavy chain antibody found in Chiloscyllium plagiosum, which has a low molecular weight and superior tissue penetration of variable region (variable new antigen receptor, VNARs), was considered to have the high antigen-binding activity and stability. This type of antibody has a simple structure that can be prokaryoticaly expressed, which makes it easily to produce new antiangiogenic target drugs. Specific anti-IgNAR rabbit multiple antibodies have been used to assess the level of VNARs in sharks and have shown a significant enrichment of IgNAR after triple immunization. An anti-VEGFR2 phage library was used for the targeted VNARs screening, and five candidate VNARs sequences were subsequently obtained by phage screening, followed by combined screening with the transcriptome library, and analysis of conserved regions along with 3D modelling matched the VNAR profile. ELISA and cell-based assays showed that two of the VNARs, VNAR-A6, and VNAR-E3, had a superior antigen affinity and anti-angiogenic activity thereby being able to inhibit human Umbilical Vein Endothelial Cells proliferation and migration. The anti-VEGFR2 VNARs derived from the immunized C. plagiosum and screened by phage library, which provide the new research ideas and specific approaches for the development of new drugs. The anti-VEGFR2 VNARs are capable for blocking the VEGF-VEGFR pathway, which of these may contribute to expanding the use of anti-angiogenic drugs.<br /> (© The Author(s) 2024. Published by Oxford University Press on behalf of the British Society for Immunology. All rights reserved. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our siteā€”for further information please contact journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1365-2249
Volume :
218
Issue :
2
Database :
MEDLINE
Journal :
Clinical and experimental immunology
Publication Type :
Academic Journal
Accession number :
39028612
Full Text :
https://doi.org/10.1093/cei/uxae060