Back to Search Start Over

Development of a machine learning-based model to predict major adverse events after surgery for type A aortic dissection complicated by malnutrition.

Authors :
Xie LF
Lin XF
Xie YL
Wu QS
Qiu ZH
Lan Q
Chen LW
Source :
Frontiers in nutrition [Front Nutr] 2024 Jul 04; Vol. 11, pp. 1428532. Date of Electronic Publication: 2024 Jul 04 (Print Publication: 2024).
Publication Year :
2024

Abstract

Objective: This study aims to develop a predictive model for the risk of major adverse events (MAEs) in type A aortic dissection (AAAD) patients with malnutrition after surgery, utilizing machine learning (ML) algorithms.<br />Methods: We retrospectively collected clinical data from AAAD patients with malnutrition who underwent surgical treatment at our center. Through least absolute shrinkage and selection operator (LASSO) regression analysis, we screened for preoperative and intraoperative characteristic variables. Based on the random forest (RF) algorithm, we constructed a ML predictive model, and further evaluated and interpreted this model.<br />Results: Through LASSO regression analysis and univariate analysis, we ultimately selected seven feature variables for modeling. After comparing six different ML models, we confirmed that the RF model demonstrated the best predictive performance in this dataset. Subsequently, we constructed a model using the RF algorithm to predict the risk of postoperative MAEs in AAAD patients with malnutrition. The test set results indicated that this model has excellent predictive efficacy and clinical applicability. Finally, we employed the Shapley additive explanations (SHAP) method to further interpret the predictions of this model.<br />Conclusion: We have successfully constructed a risk prediction model for postoperative MAEs in AAAD patients with malnutrition using the RF algorithm, and we have interpreted the model through the SHAP method. This model aids clinicians in early identification of high-risk patients for MAEs, thereby potentially mitigating adverse clinical outcomes associated with malnutrition.<br />Competing Interests: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.<br /> (Copyright © 2024 Xie, Lin, Xie, Wu, Qiu, Lan and Chen.)

Details

Language :
English
ISSN :
2296-861X
Volume :
11
Database :
MEDLINE
Journal :
Frontiers in nutrition
Publication Type :
Academic Journal
Accession number :
39027660
Full Text :
https://doi.org/10.3389/fnut.2024.1428532