Back to Search Start Over

Convolutional neural network for automated tooth segmentation on intraoral scans.

Authors :
Wang X
Alqahtani KA
Van den Bogaert T
Shujaat S
Jacobs R
Shaheen E
Source :
BMC oral health [BMC Oral Health] 2024 Jul 16; Vol. 24 (1), pp. 804. Date of Electronic Publication: 2024 Jul 16.
Publication Year :
2024

Abstract

Background: Tooth segmentation on intraoral scanned (IOS) data is a prerequisite for clinical applications in digital workflows. Current state-of-the-art methods lack the robustness to handle variability in dental conditions. This study aims to propose and evaluate the performance of a convolutional neural network (CNN) model for automatic tooth segmentation on IOS images.<br />Methods: A dataset of 761 IOS images (380 upper jaws, 381 lower jaws) was acquired using an intraoral scanner. The inclusion criteria included a full set of permanent teeth, teeth with orthodontic brackets, and partially edentulous dentition. A multi-step 3D U-Net pipeline was designed for automated tooth segmentation on IOS images. The model's performance was assessed in terms of time and accuracy. Additionally, the model was deployed on an online cloud-based platform, where a separate subsample of 18 IOS images was used to test the clinical applicability of the model by comparing three modes of segmentation: automated artificial intelligence-driven (A-AI), refined (R-AI), and semi-automatic (SA) segmentation.<br />Results: The average time for automated segmentation was 31.7 ± 8.1 s per jaw. The CNN model achieved an Intersection over Union (IoU) score of 91%, with the full set of teeth achieving the highest performance and the partially edentulous group scoring the lowest. In terms of clinical applicability, SA took an average of 860.4 s per case, whereas R-AI showed a 2.6-fold decrease in time (328.5 s). Furthermore, R-AI offered higher performance and reliability compared to SA, regardless of the dentition group.<br />Conclusions: The 3D U-Net pipeline was accurate, efficient, and consistent for automatic tooth segmentation on IOS images. The online cloud-based platform could serve as a viable alternative for IOS segmentation.<br /> (© 2024. The Author(s).)

Details

Language :
English
ISSN :
1472-6831
Volume :
24
Issue :
1
Database :
MEDLINE
Journal :
BMC oral health
Publication Type :
Academic Journal
Accession number :
39014389
Full Text :
https://doi.org/10.1186/s12903-024-04582-2