Back to Search Start Over

Derivation of water quality criteria for paraquat, bisphenol A and carbamazepine using quantitative structure-activity relationship and species sensitivity distribution (QSAR-SSD).

Authors :
Xu YQ
Huang P
Li XW
Liu SS
Lu BQ
Source :
The Science of the total environment [Sci Total Environ] 2024 Oct 20; Vol. 948, pp. 174739. Date of Electronic Publication: 2024 Jul 14.
Publication Year :
2024

Abstract

The risk assessment of an expanding array of emerging contaminants in aquatic ecosystems and the establishment of water quality criteria rely on species sensitivity distribution (SSD), necessitating ample multi-trophic toxicity data. Computational methods, such as quantitative structure-activity relationship (QSAR), enable the prediction of specific toxicity data, thus mitigating the need for costly experimental testing and exposure risk assessment. In this study, robust QSAR models for four aquatic species (Rana pipiens, Crassostrea virginica, Asellus aquaticus, and Lepomis macrochirus) were developed using leave-one-out (LOO) screening variables and the partial least squares algorithm to predict toxicity data for paraquat, bisphenol A, and carbamazepine. These predicted data can be integrated with experimental data to construct SSD models and derive hazardous concentration for 5 % of species (HC <subscript>5</subscript> ) for the criterion maximum concentration. The chronic water quality criterion for paraquat, bisphenol A, and carbamazepine were determined at 6.7, 11.1, and 3.5 μg/L, respectively. The QSAR-SSD approach presents a viable and cost-effective method for deriving water quality criteria for other emerging contaminants.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2024 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
948
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
39009142
Full Text :
https://doi.org/10.1016/j.scitotenv.2024.174739