Back to Search Start Over

Electromechanical Performances of Polyvinyl Chloride Gels Using (Polyvinyl Chloride-Co-Vinyl Acetate) (P(VC-VA)) Synergistic Plasticization.

Authors :
Yan H
Wei C
Wang Z
Liu L
Zhu Z
Zhang J
Zhu J
Zhang W
Source :
Polymers [Polymers (Basel)] 2024 Jul 03; Vol. 16 (13). Date of Electronic Publication: 2024 Jul 03.
Publication Year :
2024

Abstract

The current polyvinyl chloride (PVC) gel flexible actuators are facing challenges of high input voltage and an insufficient elastic modulus. In this study, we conducted a detailed study on the properties of PVC gel prepared by introducing the modifier polyvinyl chloride-vinyl acetate (P(VC-VA)). We compared a modified PVC gel with the traditional one in terms of the relative dielectric constant, mechanical modulus, and electromechanical actuation performance. Experimental results demonstrated that the introduction of P(VC-VA) enhanced the dielectric constant and reduced the driving electric field strength of PVC gels. The dielectric constant increased from 4.77 to 7.3. The electromechanical actuation performance increased by 150%. We employed the Gent model to fit the experimental results, and the actual experimental data aligned well with the expectations of the Gent model. The research results show that this type of plasticizing method effectively balanced the mechanical and electrical performance of PVC gels. This study summarizes the experimental results and performance analysis of PVC gels prepared using innovative plasticization methods, revealing the potential engineering applications of polymeric gels.

Details

Language :
English
ISSN :
2073-4360
Volume :
16
Issue :
13
Database :
MEDLINE
Journal :
Polymers
Publication Type :
Academic Journal
Accession number :
39000759
Full Text :
https://doi.org/10.3390/polym16131904