Back to Search Start Over

Genetic Analysis of an F 2 Population Derived from the Cotton Landrace Hopi Identified Novel Loci for Boll Glanding.

Authors :
Shrestha A
Shim J
Mangat PK
Dhaliwal LK
Sweeney M
Angeles-Shim RB
Source :
International journal of molecular sciences [Int J Mol Sci] 2024 Jun 27; Vol. 25 (13). Date of Electronic Publication: 2024 Jun 27.
Publication Year :
2024

Abstract

Landraces are an important reservoir of genetic variation that can expand the narrow genetic base of cultivated cotton. In this study, quantitative trait loci (QTL) analysis was conducted using an F <subscript>2</subscript> population developed from crosses between the landrace Hopi and inbred TM-1. A high-density genetic map spanning 2253.11 and 1932.21 cM for the A and D sub-genomes, respectively, with an average marker interval of 1.14 cM, was generated using the CottonSNP63K array. The linkage map showed a strong co-linearity with the physical map of cotton. A total of 21 QTLs were identified, controlling plant height (1), bract type (1), boll number (1), stem color (2), boll pitting (2), fuzz fiber development (2), boll shape (3), boll point (4), and boll glanding (5). In silico analysis of the novel QTLs for boll glanding identified a total of 13 candidate genes. Analysis of tissue-specific expression of the candidate genes suggests roles for the transcription factors bHLH1 , MYB2 , and ZF1 in gland formation. Comparative sequencing of open reading frames identified early stop codons in all three transcription factors in Hopi. Functional validation of these genes offers avenues to reduce glanding and, consequently, lower gossypol levels in cottonseeds without compromising the defense mechanisms of the plant against biotic stresses.<br />Competing Interests: The authors declare no conflicts of interest.

Details

Language :
English
ISSN :
1422-0067
Volume :
25
Issue :
13
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
39000183
Full Text :
https://doi.org/10.3390/ijms25137080