Back to Search Start Over

Engineering Interfacial Integrity with Hydrolytic-Resistant, Self-Reinforcing Dentin Adhesive.

Authors :
Demirel E
Korkmaz B
Chang Y
Misra A
Tamerler C
Spencer P
Source :
International journal of molecular sciences [Int J Mol Sci] 2024 Jun 27; Vol. 25 (13). Date of Electronic Publication: 2024 Jun 27.
Publication Year :
2024

Abstract

The leading cause of composite restoration failure is secondary caries, and although caries is a multifactorial problem, weak, damage-prone adhesives play a pivotal role in the high susceptibility of composite restorations to secondary caries. Our group has developed synthetic resins that capitalize on free-radical polymerization and sol-gel reactions to provide dental adhesives with enhanced properties. The resins contain γ-methacryloxypropyltrimethoxysilane (MPS) as the Si-based compound. This study investigated the properties of methacrylate-based resins containing methacryloxymethyltrimethoxysilane (MMeS) as a short-chain alternative. The degree of conversion (DC), polymerization kinetics, water sorption, mechanical properties, and leachates of MMeS- and MPS-resins with 55 and 30 wt% BisGMA-crosslinker were determined. The formulations were used as model adhesives, and the adhesive/dentin (a/d) interfaces were analyzed using chemometrics-assisted micro-Raman spectroscopy. The properties of the 55 wt% formulations were comparable. In the 30 wt% BisGMA formulations, the MMeS-resin exhibited faster polymerization, lower DC, reduced leachates, and increased storage and loss moduli, glass transition (T <subscript>g</subscript> ), crosslink density, and heterogeneity. The spectroscopic results indicated a comparable spatial distribution of resin, mineralized, and demineralized dentin across the a/d interfaces. The hydrolytically stable experimental short-chain-silane-monomer dental adhesive provides enhanced mechanical properties through autonomous strengthening and offers a promising strategy for the development of restorative dental materials with extended service life.

Details

Language :
English
ISSN :
1422-0067
Volume :
25
Issue :
13
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
39000170
Full Text :
https://doi.org/10.3390/ijms25137061